LODifier

Generating RDF from Natural Language

Bachelor's Thesis

of

Isabelle Augenstein

Department of Computational Linguistics

Heidelberg University, Germany

Supervisors:

Prof. Dr. Sebastian PADO
Department of Computational Linguistics
Heidelberg University, Germany

Dr. Sebastian RUDOLPH
Institute of Applied Informatics and Formal Description Methods
Karlsruhe Institute of Technology, Germany

Submission Date: 21 July 2011

Author’s declaration

I declare that this thesis has been completed by myself independently without
outside help and that only the defined sources and study aids were used.
Any thoughts or quotations which were inferred from the work of others
are made known through the definition of sources. This thesis has not been
submitted, either in part or whole, for a degree at this or any other university
or institution.

Heidelberg, 21 July 2011

(Isabelle Augenstein)

Abstract

The automatic extraction of information from text and formal description of this
information is an important goal of both the Semantic Web and computational
linguistics. Extracted information can be used for a variety of tasks such as
ontology generation, question answering or information retrieval.

LODiffier is an approach that combines deep semantic analysis with named
entity recognition, word-sense disambiguation and controlled Semantic Web
vocabularies in order to extract named entities and relations between them from
text and to convert them to RDF. The approach is evaluated as an information
retrieval task and the evaluation is performed with a manually created corpus.
Very promising results could be achieved: a coverage of 72.2% for correctly
recognized relations.

Zusammenfassung

Das automatische Extrahieren von Informationen aus Text und die formale
Beschreibung dieser Informationen ist sowohl im Semantic Web als auch
in Computerlinguistik ein wichtiges Ziel. Die extrahierten Informationen
konnen fiir viele verschiedene Aufgaben verwendet werden, z.B. fiir Ontology-
Learning, Question Answering oder Information Retrieval.

LODifier ist ein Ansatz, der tiefe semantische Analyse mit Named Entity
Recognition, Word Sense Disambiguation und kontrollierten Semantic Web
Vokabularen kombiniert um Named Entities und Relationen zwischen ihnen
aus Text zu extrahieren und in RDF zu konvertieren. Der Ansatz wird als
Information Retrieval Task evaluiert und die Evaluation mit einem manuell
erstellten Korpus durchgefiihrt. Vielversprechende Ergebnisse konnten erzielt
werden: eine Coverage von 72,2% fiir korrekt erkannte Relationen.

ii

Acknowledgements

First, I would like to thank Dr. Sebastian Rudolph who made this Bachelor’s
thesis possible. He created a stimulating research environment at AIFB that
laid the groundwork for this thesis and supported me in moments of doubt.
Many thanks go to Prof. Dr. Sebastian Pad6 for supervising the thesis. He
encouraged a cooperation with the AIFB and helped to develop ideas put
forward. My thesis would have been impossible without the help of Christoph
Mayer and Danny Rehl, who put a lot of effort into annotating the evaluation
data.

1ii

Contents

1. Introduction

2. Background

2.1.
2.2.
2.3.
24.
2.5.
2.6.

Semantic Web

Linked OpenData
Ontologies o
DBPedia e
WordNet e

3. Related Work

3.1. Existing Systems
32. Conclusion
4. System
4.1. Imitial System o oo L
4.1.1. Recognizing subjects and objects
41.2. Recognizing relations
41.3. Generating RDF triples
4.1.4. Linking DBPedia URIs to Boxer classes
415. Conclusion 0.
42. Improved System
4.2.1. Assigning DBPedia URIs to Boxer relations

4.2.2. Assigning RDF WordNet URIs to Boxer relations
423. Generating RDF triples

5. Evaluation

5.1.
5.2.
5.3.

Corpus
Procedure
Results

v

0 00 NI NN Wi

O O

11

12
12
12
13
14
20
21
22
22
22
25

CONTENTS CONTENTS

54. Discussion e 29
6. Conclusions 30
References 31
A. Syntax of Boxer Output 34
B. Source Code 36
C. Evaluation Data 37
D. Evaluation Results 38

Chapter 1.

Introduction

In this Bachelor’s thesis, I will describe an approach to convert natural language
to RDF triples. The approach combines named entity recognition (NER) methods
with parsing, semantic analysis and word sense disambiguation (WSD) techniques.
Several existing tools and resources are used for this task: Wikifier for NER,
C&C and Boxer for parsing and semantic analysis, ukb for WSD and DBPedia
and WordNet to provide a controlled vocabulary. The goal of this thesis is to
develop a method for automatically converting a text to a semantic structure
that is better suited for knowledge extraction than plain, unstructured text.
The resulting structure is encoded in RDF and is interlinked with the large
knowledge bases DBPedia and WordNet.

The thesis is organized as follows: in chapter 2, background information
on the Semantic Web, RDEF, ontologies, DBPedia and WordNet is provided.
Chapter 3 presents an overview over relevant related work and concludes with
a motivation for this thesis. A detailed description of the methodology behind
LODifier is described in section 4 and the system’s evaluation and results are
presented in section 5. In chapter 6 an outlook on possible future work is given.
Attached to this document is a CD, which contains the LODifier source code
and the evaluation data. The format of the content on CD is described in the
appendix.

Chapter 2.

Background

In this section, the basic concept of the Semantic Web and Semantic Web
technologies (see also Hitzler et al. (2009) for a more detailed introduction
to the topic) is explained. One Semantic Web standard, RDEF, is explained
in detail, since it is crucial for understanding how the output of LODifier
is created. The ontology concept and the idea behind the Linked Open Data
(LOD) initiative are explained. Furthermore, the knowledge bases WordNet
and DBPedia are introduced.

2.1. Semantic Web

The Semantic Web can be understood as an extension of the World Wide Web
(WWW). Its concept was introduced by Tim Berners-Lee (Berners-Lee et al.,
2001), who is also the inventor of the WWW. The Semantic Web organizes data
in a semantic network.
The WWW consists of interlinked web pages, which were originally intended
for human readers. Therefore, they usually do not contain a semantic structure
to aid machine processing. The goal of the Semantic Web is to make data
widely accessible by establishing a network of links between data and to intro-
duce standards to describe the data so that it can be processed automatically.
The Semantic Web standards are developed by the World Wide Web Consor-
tium (W3C). There are standards for describing data, e.g., RDF or OWL and
standards for querying data, e.g., SPARQL.

2.2. RDF CHAPTER 2. BACKGROUND

2.2. RDF

The Resource Description Framework (RDF) is a Semantic Web standard for
modeling data. It was the first Semantic Web language developed by the W3C.

The data model of RDF is a directed graph consisting of nodes that are
linked by edges. In RDF syntax, the graph is separated into pairs of nodes
that are linked by edges. The resulting RDF triples consist of the three parts
subject, predicate and object. These names are, however, not to be mistaken for
grammatical categories, even though they sometimes overlap.

URIs

For describing RDF data, uniform identifiers are needed. The purpose of
uniform identifiers is that on one hand, if two documents contain information
about the same resource, this resource also has the same identifier. On the
other hand, identical labels could refer to different resources.

To solve this problem, Uniform Resource Identifiers (URIs) are introduced to
discriminate resources. URIs can either be Uniform Resources Locators (URLs),
Uniform Resources Names (URNs) or both. A URL is used, if the URI has a
web address and can be accessed online. In some cases, a resource has no
online location, but nevertheless has a name and can be identified. A URI has
a clearly defined syntax, regardless of whether it is a URL or a URI. It consists
of four parts as illustrated below:

scheme: [//authority] path[?query] [#fragment]

A URI starts with a scheme name. This could be e.g. a protocol like HTTP
or FTP. The scheme is followed by a path. The path optionally starts with an
authority, which is usually a hostname. The query is optional and starts with a
question mark. The fragment is also optional and is preceeded by a hashmark.
It is used if a subpart of the resource shall be addressed.

As already explained URIs serve the purpose of having an identifier that is
the same for all occurrences of the same resource. In practice, it is still possible
to have different URIs for the same resource. A solution for this is to use
certain vocabularies. An example for a well-defined vocabulary is DBPedia (see
chapter 2.5). If a vocabulary is not available, it is possible to introduce new
URIs. To introduce a new URI, it must first be made sure, that the URI is not
already used in a different context.

2.2. RDF CHAPTER 2. BACKGROUND

However, if one has the choice between a self-defined and an existing URI,
one should always use the existing one. When existing URIs are URLs, they
have an existing webpage that contains more information about the resource,
e.g., a documentation or references to other related URIs, which is an advantage
over self-defined URIs.

Notations

There are different options for presenting RDF content, also called notations.
The most commonly used notations include RDF/XML and N3. LODifier uses
the N3 notation, because of the simplicity of the syntax. However, N3 can be
automatically converted into RDF/XML and vice versa.

N3

N3 is a realization of RDF that is closely oriented on the data model of graphs.
It is basically a collection of every triple of the graph. The N3 Notation
comprises the less complicated derivations N-Triples and turtle. A very basic
sample of the usage of N3 is given in the example below.

<http://dbpedia.org/page/Google>
<http://example.org/buy> <http://dbpedia.org/page/YouTube> .

N3 also provides an opportunity to abbreviate URIs. This is done using
namespaces. The above sample can therefore be rearranged as follows:

Oprefix dbpedia: <http://dbpedia.org/page/> .
Oprefix ex: <http://example.org/> .
dbpedia:Google ex:buy dbpedia:YouTube .

RDF /XML

Although N3 is very easy to read for humans and also machine-processable,
it is not the most commonly used RDF syntax. The most commonly used
RDF syntax is RDF/XML, an XML realization of RDF. This may be due to
the large distribution of and its compatibility with other applications. The
main difference between N3 and RDF/XML is that in RDF/XML, triples are
organized as hierarchical structures that are grouped by subjects. A very basic
example of the usage of RDF/XML is again given in the sample below.

2.2. RDF CHAPTER 2. BACKGROUND

<?7xml version="1.0"7>
<rdf:RDF xmlns:ex="http://example.org/"
xmlns:dbpedia="http://dbpedia.org/page/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf -syntax-ns#">
<rdf:Description rdf:about="http://dbpedia.org/page/Google">
<ex:buy rdf:resource="http://dbpedia.org/page/YouTube"/>
</rdf :Description>
</rdf :RDF>

Literals

Not every RDF content has to be modeled using URIs. One opportunity
for modeling concrete values are literals. Numbers, dates or times can be
modeled this way. A literal in RDF is represented as a string, i.e., a sequence
of characters. The literal 32 would e.g., refer to the number 32. It should be
noted that this kind of literals are called untyped literals. That means the literal
32 is not by default recognized as a number. In order to interpret the literal 32
as a number, data types have to be used.

Data types

RDF allows certain data types for literals, which are represented by URIs. Data
type information is added to the RDF triples using XML Schema.

In LODifier, three kinds of XML Schema data types are used: decimal, date
and time. Below is an example in N3 notation how to integrate these data
types in RDE

Q@prefix ex: <http://example.org/> .

Oprefix xmls: <http://www.w3.org/2001/XMLSchema#> .
ex:decimal xmls:decimal "32"

ex:date xmls:date "2011-01-07"

ex:time xmls:time "00:08:17"

Blank Nodes

RDF does not only allow modeling of simple binary relations, but also of more
complex data structures. For describing complex data structures, anonymous
resources called blank nodes may be required. Since blank nodes do not contain

2.2. RDF CHAPTER 2. BACKGROUND

any information themselves, they are not modeled with URIs. Instead, node
IDs are used. The notation of blank nodes in RDF is as follows:

Oprefix xmls: <http://www.w3.org/2001/XMLSchema#> .

_:x0 xmls:decimal "32" .

The notation of a blank node starts with an underscore and a colon and is
followed by an arbitrary ID that may consist of characters and digits.

Resource ldentification

As already mentioned RDF triples consist of a subject, a predicate and an
object. To describe these parts of the triple, several structures are possible:
URISs, literals and blank nodes. An RDF subject can be either a URI or a blank
node, an RDF predicate must be a URI and an RDF object can be a URI, a
blank node or a literal.

RDF Vocabulary

RDF has a defined vocabulary to model knowledge. The concepts used by
LODifier are described here.

rdf:type

New class names are introduced with rdf:type. This concept declares a resource
as an instance of a class. Here is an example of how to use rdf:type :

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
Oprefix ex: <http://example.org/> .

O@prefix class: <http://example.org/class> .

_:var0x0 rdf:type class:buy .

Reification

Reification is used to describe complex data structures. A blank node is in-
troduced which serves as a referent for the whole complex statement. Each
part of the triple that is an object of the blank node can be described using
rdf:subject, rdf:predicate and rdf:object. Below is an example that shows a reified
triple.

2.3. LINKED OPEN DATA CHAPTER 2. BACKGROUND

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
Oprefix ex: <http://example.org/> .

ex:Anne ex:propose _:varOx0 .

_:var0x0 rdf:subject ex:Peter .

_:var0x0 rdf:predicate ex:buy .

_:var0Ox0 rdf:object ex:lettuce .

2.3. Linked Open Data

The goal of the LOD initiative is somewhat similar to the goal of Semantic Web
in general: Interlinking structured data. All of the data to be interlinked has to
fulfill certain requirements. Resources have to be described using HTTP URIs
and information has to be provided in a Semantic Web standard. If related
URIs are available, they should be interlinked.

Currently, there are 203 published data sets, which consist of more than
25 billion RDF triples. Data sets include e.g., DBPedia, Friend of a Friend,
Geonames and WordNet.

2.4. Ontologies

An ontology in computer science is a standardized representation of knowl-
edge. It is used to describe concepts and relation types. The first definition of
ontologies was given by Gruber (1993). He described an ontology as a “formal,
explicit specification of a shared conceptualisation”.

Components

Gruber (1993) states that “ontologies are often equated with taxonomic hierar-
chies of classes, class definitions, and the subsumption relation, but ontologies
need not be limited to these forms. Ontologies are also not limited to conser-
vative definitions that is, definitions in the traditional logic sense that only
introduce terminology and do not add any knowledge about the world.”

As Gruber (1993) clarifies, ontologies can consist of two components -
terminological knowledge (TBox statements) about the concepts of a domain
and assertion knowledge (ABox statements), knowledge about entities of these

2.5. DBPEDIA CHAPTER 2. BACKGROUND

concepts. An ontology is composed of either ABox or TBox statements or of
both. Ontologies are often modeled using Semantic Web technologies.

2.5. DBPedia

DBPedia (Bizer et al., 2009) is a large, freely available domain-independent
multilingual ontology that is extracted from Wikipedia. It currently contains
information about 3.5 million entities and consists of 672 RDF triples.

The knowledge DBPedia consists of is extracted from Wikipedia articles.
That knowledge comprises Wikipedia page names, infobox templates, catego-
rization information, images, geo-coordinates and links to external webpages.
Each entity in DBPedia is described by a URI of the form http://dbpedia.org/
resource/Name, where Name is the name of the Wikipedia page. DBPedia
contains links to various data sets including FOAF, Geonames and WordNet.

2.6. WordNet

WordNet is a large scale lexical database for the English language. Version 3.0
of WordNet contains more than 155000 words of the word types nouns, verbs,
adjectives and adverbs.

Words are grouped into sets of synonyms, which are called synsets. Each
word is disambiguated resulting in different word senses. Therefore, a word can
appear in several synsets. The synsets themselves are linked to other synsets
by conceptual relations. Synsets contain glosses (short definitions) and short
example sentences.

The most common relation in WordNet is hyponymy, also called ISA relation.
Thus, synsets have links to more general synsets. Other relation types in
WordNet include meronymy (part-whole relation), troponymy (specific manner
characterizing an event described by verbs) and antonymy (direct opposites).

WordNet is a very valuable resource for NLP due to the large coverage
of the English language. Since there are RDF versions of WordNet available,
RDF WordNet 2.0 (van Assem et al., 2006) and RDF WordNet 3.0 (van Assem
and van Ossenbruggen, 2011), WordNet can also be used as a vocabulary for
the Semantic Web. WordNet is part of the Linked Open Data cloud and is
interlinked to several data sets including DBPedia.

Chapter 3.

Related Work

This section presents approaches that are in some ways similar to the methods
used by LODifier. After the approaches are discussed, the methodology
LODifier uses is motivated in section 3.2

3.1. Existing Systems

Ontology Generation

An overview over ontology generation systems is given by Bedini and Nguyen
(2007). Although the article does not consider systems developed after 2007, to
my knowledge its conclusion would still be similar. The ontology generation
process can be divided into five steps. The first step is the extraction of infor-
mation from a structured, semi-structured or unstructured corpus. Techniques
used for extraction include NLP techniques, clustering and machine learning.
The extraction is followed by an analysis, where the retrieved information is
clustered and relations are extracted. In the generation process, the model is
converted into a formal specification like RDF or OWL. After this the ontology
is validated to remove wrong concepts and relationships, which is usually done
manually. The final step is the evolution of the ontology, i.e., to adapt the
ontology to changes.

Bedini and Nguyen (2007) compare several ontology systems on their per-
formance and on their automation of these five steps. The conclusion of the
article is, however, that there is no system that fully automates the process
of evolution which means, the ontologies generated are static. Also, none of
the systems described fully automates the process of extraction, analysis and
generation and operate on unstructured data.

3.1. EXISTING SYSTEMS CHAPTER 3. RELATED WORK

Relationship Extraction

There are various approaches to extracting relationships from text. These
approaches usually include the annotation of text with named entities and
relations and the extraction of those relations. Two approaches that are very
similar to LODifier are of Byrne and Klein (2009) and Ramakrishnan et al.
(2006). They both use NER, POS-tagging and parsing to discover named
entities and relations between them. The resulting relations are converted to
RDFE.

The disadvantage of these methods is however that they use labeled data as
a base for extracting relations, which is not flexible, as labeled data requires
manual annotation. Another interesting approach is to use DBPedia for
relationship discovery (Heim et al., 2010). The RelFinder maps selected named
entities to DBPedia and then searches the data set for relations. The results are
presented to the user as graph visualization. The goal of this approach is to
provide more detailed information about relations and then it is possible with
other sources (Google and Wikipedia are used for comparison in a user study)
that are used for relationship discovery. The system performs rather well and
outperforms Google and Wikipedia in user satisfaction and efficiency.

The RelFinder provides a very interesting user application for relationship
extraction. It depends, however, on existing, rather static datasets and could
thus not be used, e.g., to extract relations from news that are updated daily.

Extracting Semantic Networks

Harrington and Clark (2007) show a successful approach to automatically
creating a semantic network. The AsKNet system uses C&C and Boxer to
extract semantic relations. To decide, which nodes refer to the same entities,
similarity scores are computed based on spreading activation and nodes
are then mapped together. An approach building on AsKNet comes from
Wojtinnek et al. (2010). They use AsKNet to build a semantic network based
on relations between concepts instead of relations between named entities as
already present in AsKNet. The resulting graph is then converted to RDF.
AsKNet and also the system building on AsKNet by Wojtinnek et al. (2010)
present an approach very similar to LODifier. However, AsKNet and LODifier
differ in the way they disambiguate named entities. LODifier uses NER and
WSD methods before generating RDF triples and describes the entities and
relations using DBPedia and WordNet URIs. AsKNet first generates semantic

10

3.2. CONCLUSION CHAPTER 3. RELATED WORK

structures from text and then tries to map nodes and edges together based on
similarity.

The approach by Wojtinnek et al. (2010) uses RDF to describe a semantic
network based on AsKNet that contains relations between concepts. The
resulting RDF triples are not interlinked with other data bases, which is done
by LODifier. Unfortunately, there is no RDF version of AsKNet itself, which is
a further difference between AsKNet and LODifier.

3.2. Conclusion

In summary, it can be said that there are four main differences between the
approaches described and the approach LODifier takes. These are the aspect of
automating the extraction process, using unlabeled data for extracting relations,
performing a full extraction of all relations in the text and describing those
using Semantic Web standards and linking the named entities and relations to
well-defined vocabularies.

To achieve these goals, several well-established methods used in these
approaches are combined: Subjects and objects are recognized using NER; rela-
tions are extracted by parsing the text and performing a semantic analysis with
Boxer; finally, the resulting RDF triples are linked to well-defined vocabularies.

11

Chapter 4.

System

This section describes the resources and algorithms used to build the ontology
generation system LODifier. First, the initial approach developed before the
Bachelor’s thesis is described in section 4.1. Section 4.1.5 gives a summary
of the initial approach and explains its shortcomings. The improved system
developed during the Bachelor’s thesis is then explained in section 4.2.

4.1. Initial System

The goal of the LODifier system is to generate an RDF representation out of
English plain text. First, the input is searched for subjects, objects and relations
between them. Then, RDF triples are generated and DBPedia URIs are linked
to the subjects and objects.

Subjects and objects are recognized using the NER system Wikifier (Milne
and Witten, 2011). Relations between these two are then recognized using the
statistical parser C&C and Boxer (Curran et al., 2007), a tool for generating
discourse representation structures (Kamp and Reyle, 1993).

To get RDF triples, the Boxer DRS output is processed and triples are
extracted. The named entities from Wikifier are converted into DBPedia URIs
and linked to the RDF triples.

4.1.1. Recognizing subjects and objects

The first step is to identify subjects and objects. They are recognized using the
NER system Wikifier (Milne and Witten, 2011) that enriches English plain text
with Wikipedia links. Wikifier is used for NER, because named entities are
returned as Wikipedia URLs which can be easily converted to DBPedia URIs.

12

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

This way, the DBPedia namespace can be used to describe named entities and
no new URIs have to be introduced.

To disambiguate the Wikipedia links, Wikifier employs a machine learning
approach that uses the links between Wikipedia articles as training data. Since
the links between Wikipedia articles are manually created by Wikipedia editors,
the training data consists of man-made disambiguation choices and is thus
very reliable. Wikifier performs well at a precision of 73.8% and recall of 74.4%.

If Wikifier finds a named entity, it is substituted by the name of the English
Wikipedia page. Figure 4.1 shows an example of the Wikifier output for the
test sentence Google buys YouTube.

[[Googlel] buys [[YouTubell].

Figure 4.1. Wikifier output for test sentence Google buys YouTube.

4.1.2. Recognizing relations

After subjects and objects are identified using Wikifier, the relations between
those two are identified. This is done by using C&C and the Boxer system
developed by Curran et al. (2007). The C&C parser uses a maximum entropy
tagger that tags words with the grammatical categories from the Penn Tree-
bank. In addition, C&C contains a named entity recognizer that distinguishes
between ten different named entity types as displayed in table 4.1.

The parser has precision and recall scores well above 80%. Figure 4.2 shows
an example for the C&C output for the test sentence Google buys YouTube..

Boxer is a system that uses the output of the statistical parser C&C. Boxer
produces DRSs, which consist of discourse referents and conditions. For every
new noun phrase or event in a sentence, a discourse referent is introduced
and for every new relation, a condition is introduced. The conditions are
described as either one- or two-place relations. Since DRSs are recursive, it is
also possible that a new DRS is introduced. Boxer then binds anaphoras to
previously introduced discourse referents or accommodates them. Since the
structure of DRSs is very similar to the structure of RDF triples, they can be
used as a preprocessing step for extracting RDF triples from text.

Boxer has several output formats. The default one is PROLOG, where every
discourse referent is represented by a Prolog variable. A flat structure (where

13

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

Boxer Syntax Explanation

org organization
per person

ttl title

quo quotation

loc location

fst first name

sur surname

url URL

ema E-Mail

nam unknown name

Table 4.1. Named Entity Types recognized by C&C

the recursive structure is unfolded), an XML structure or first-order-logic
are also possible. Finally, a graphical display of the discourse representation
structures, as introduced by Kamp and Reyle (1993), is possible. In figure 4.3,
the example sentence Google buys YouTube. is displayed in the Prolog and the
graphical output format.

DRS conditions in Boxer can be either basic or complex (see table 4.2). There
can be one-place predicates, which are introduced by nouns, verbs, adverbs
and adjectives. These are e.g., person, event or topic. There are also two-place
relations which are introduced by prepositions and verb roles, e.g. agent,
patient or theme. A full list of the relations from Curran et al. (2011) can be
found in the appendix in tables A.1 and A.2. More details of the Boxer output
syntax are also described by Curran et al. (2011).

4.1.3. Generating RDF triples

After the Boxer DRS output is processed, RDF triples are extracted in the next
step. The first thing to be considered is what namespace to use for the URIs.
Unlike Wikifier, Boxer doesn’t provide URLs which can be transformed into
URIs, so new URIs must be introduced.

What needs to be considered for defining new URIs is that Boxer has a set
of fixed types, predicate and relation types. Tables A.1 and A.2 contain an
overview over the different fixed types in Boxer. So to create new URIs there

14

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

ccg(l,
rp(s:dcl,
ba(s:dcl,
1x(np, n,
t(n, ’Google’, ’Google’, ’NNP’, ’I-NP’, ’I-0RG’)),
fa(s:dcl\np,
t((s:dcl\np) /np, ’buys’, ’buy’, ’VBZ’, ’I-VP’, ’0°),

1x(np, n,
t(n, ’YouTube’, ’YouTube’, ’NNP’, ’I-NP’, ’I-0RG’)))),
t(period, ’.7, >.7, 2.7, ’0’, °0°))).

Figure 4.2. C&C output for test sentence Google buys YouTube.

Basic Condition Complex Condition

Boxer Syntax Explanation Boxer Syntax Explanation
pred one-place predicates or disjunction

rel two-place relations imp implication

named named entities not negation

timex time expressions nec necessarily

card cardinal expressions pos possibly

eq equality whq question

prop propositional attitude

Table 4.2. Basic and Complex Boxer Conditions

has to be distinguished between fixed predicate and relation types and not
tixed predicate and relation types. The namespaces used are explained in table
4.3.

The next step is to extract RDF triples from the different Boxer relation
types. Since DRSs are recursive and often contain encapsulated DRSs, it is
crucial to unfold the DRSs recursively. This means, that the extraction process
begins with the DRS on the highest level and ends with the DRS on the lowest
level.

Each DRSs contains a set of conditions, which are either one- or two-place
relations. For each relation type, the extraction process is different. Below is a
description of the extraction process for every single relation type.

15

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

Prefix =~ Namespace Usage

rdf http://www.w3.0rg/1999/02/ assigning types
22-rdf-syntax-ns#

owl http://www.w3.0rg/2002/07/owl# Equality

xmls http://www.w3.0rg/2001/XMLSchema# Time & cardinal expressions

foaf http://xmlns.com/foaf/0.1/ Boxer NEs

geo http://www.w3.0rg/2003/01/geo/ Boxer NEs
wgs84_pos/

dbpedia http://dbpedia.org/resource/ DBPedia URIs

wn30 http://purl.org/vocabularies/ WordNet URIs
princeton/wn30/

ex http://example.org/ Boxer complex conditions

ne http://example.org/ne Boxer NEs

drsclass http://example.org/drsclass/ fixed Boxer predicates

class http://example.org/class/ not fixed predicates

drsrel http://example.org/drsrel/ fixed Boxer relations

rel http://example.org/rel/ not fixed relations

Table 4.3. Namespaces used by LODifier

16

http://www.w3.org/1999/02/
22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://xmlns.com/foaf/0.1/
http://www.w3.org/2003/01/geo/
wgs84_pos/
http://dbpedia.org/resource/
http://purl.org/vocabularies/
princeton/wn30/
http://example.org/
http://example.org/ne
http://example.org/drsclass/
http://example.org/class/
http://example.org/drsrel/
http://example.org/rel/

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

sem(1,
[word (1001, ’Google’) ,word(1002,buys) ,word (1003, >YouTube’) ,
word(1004,°.°)], [pos(1001,’NNP’),pos(1002,°VBZ’),pos(1003,’NNP’),
pos(1004,°.°)], [ne(1001,’I-0RG’),ne(1003,’I-0RG’)],
smerge (drs ([[1001] :x0, [1003] :x1], [[1001] :named (x0,google,org,0),
[1003] :named (x1,youtube,org,0)]) ,drs([[1002] :x2],
[[]:pred(x2,event,n,1), [1002]:pred(x2,buy,v,0),
[1002] :rel(x2,x0,agent,0), [1002] :rel(x2,x1,patient,0)]))).

Whtkh 1 x0 x1 || x2 |
Thte | N |
%h% (| named(x0,google,org) |+| event(x2) [
%%% | named(x1,youtube,org) | | buy(x2) |
ot | o ___ | | agent(x2,x0) |
Totoo | patient(x2,x1) |

Figure 4.3. Boxer output for test sentence Google buys YouTube.

Predicates

_:var0O rdf:type (class / drsclass):? .

A blank node is introduced and assigned to the URI of the predicate marked
as ?. The predicate can either be a fixed Boxer predicate, in which case the
drsclass prefix is used or it is not fixed, in which case the class prefix is used.

Relations

_:var0 (rel / drsrel):? _:varl

A blank node is introduced and assigned to the URI of the relation marked
as ?’. The relation can either be a fixed Boxer relation, in which case the drsrel
prefix is used or it is not fixed, in which case the rel prefix is used.

Named Entities

_:var0O drsclass:named ne:7 .

17

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

ne:? rdf:type (foaf:0rganization / foaf:Person / foaf:title / foaf:firstName
/ foaf:surname / foaf:name / geo:Point / foaf:homepage / foaf:mbox)

A blank node is introduced and assigned to the URI of the named entity
marked as ?. The named entity is then assigned to a URI of the foaf or geo
namespace.

Time Expressions

_:var0 (xmls:date / xmls:time) 7 .

A blank node is introduced and assigned as either date or time to a time
expression marked as ?.

Cardinal Expressions

_:var0 xmls:decimal ? .

A blank node is introduced and assigned as a number to a cardinal expres-
sion marked as ?.

Equality Expressions

_:var0 xmls:number 7 .

One blank node is assigned to another blank node.

Disjunction

_:varQ rdf:type ex:disjunction .
_:varQ ex:disjunct _:var00 .
:varO ex:disjunct _:var0Ol

:varO0 rdf:type ex:conjunction .

:varOl1 rdf:type ex:conjunction .

A blank node is introduced and declared as disjunction. Two new blank
nodes are introduced which are conjunct from the first blank node. The two
blank nodes are defined as conjunctions.

18

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

Implication

_:varO rdf:type ex:implication .
:varO ex:antecedent _:var00 .
:varQ ex:consequent _:var(Ol .
:var00 rdf:type ex:conjunction .

:varOl rdf:type ex:conjunction .

A blank node is introduced and declared as implication. Two new blank
nodes are introduced; one is the antecedent and the other one the consequent
of the first blank node. The two blank nodes are declared as conjunctions.

Negation

_:var0 rdf:type ex:negation .

_:var0 rdf:type ex:conjunction .

A blank node is introduced and declared as negation. The blank nodes are
declared as conjunction.
Necessarily

_:var0 rdf:type ex:necessity .

_:var0 rdf:type ex:conjunction .

A blank node is introduced and declared as a necessity. The blank nodes
are declared as conjunction.

Possibly

_:var0 rdf:type ex:possibility .

_:var0 rdf:type ex:conjunction .

A blank node is introduced and declared as a possibility. The blank nodes
are declared as conjunction.

19

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

Wh-question

:varO rdf:type ex:referent .
:varQ ex:answer _:var00 .

:varO ex:question _:varOl .
:var00 rdf:type ex:conjunction .

:varOl rdf:type ex:conjunction .

A blank node is introduced and declared as a wh-question. Two new blank
nodes are introduced; one is the answer and the other the question of the first
blank node. The two blank nodes are declared as conjunctions.

Propositional attitude

_:varO rdf:type ex:proposition .

_:var0 rdf:type ex:conjunction .

A blank node is introduced and declared as a proposition. The blank nodes
are declared as conjunction.

4.1.4. Linking DBPedia URIs to Boxer classes

After subjects and objects are identified, relations are identified and RDF triples
are extracted, the last step is to generate DBPedia URIs out of the Wikifier
output and link those DBPedia URIs to previously introduced Boxer classes.

DBPedia is a large ontology which has been created by extracting various
parts of Wikipedia pages. Therefore, every Wikipedia page itself has a corre-
sponding DBPedia page. Also, information on the Wikipedia pages such as
infobox templates, categorization information, images, geo-coordinates and
links to external web pages are extracted (Bizer et al., 2009).

Every Wikipedia page with the URL http://en.wikipedia.org/wiki/Name has a
corresponding DBPedia page with the URI http://dbpedia.org/page/Name. This
allows for an easy conversion of Wikipedia URLs to DBPedia URIs. To create
DBPedia URIs from the Wikifier output, the English Wikipedia page name is
simply appended to the DBPedia prefix.

After this is done, the DBPedia URISs are linked to the corresponding Boxer
classes. More precisely, they are linked to the blank nodes that are assigned to
Boxer classes.

20

4.1. INITIAL SYSTEM CHAPTER 4. SYSTEM

Figure 4.4 shows an example of the LODifier output for the test sentence
Google buys YouTube.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix drsclass: <http://example.org/drsclass/> .
@prefix drsrel: <http://example.org/drsrel/> .
Oprefix class: <http://example.org/class/> .
Oprefix foaf: <http://xmlns.com/foaf/0.1/> .
Oprefix dbpedia: <http://dbpedia.org/page/> .
_:var0x0 drsclass:named dbpedia:Google .
dbpedia:Google rdf:type foaf:0rganization .
_:varOxl drsclass:named dbpedia:YouTube .
dbpedia:YouTube rdf:type foaf:0rganization .
_:var0x2 rdf:type drsclass:event .

_:var0x2 rdf:type class:buy .

_:var0x0 drsrel:agent :var0Ox2 .

_:var0Ox1 drsrel:patient :var0Ox2 .

Figure 4.4. LODifier output for test sentence “Google buys YouTube”.

4.1.5. Conclusion

In the initial approach to automatically extract RDF triples out of text, the
triples were created by converting the output of the C&C Parser and Boxer
to RDF format. Named entities were recognized using Wikifier and DBPedia
links were linked to the named entities.

On frequent improvised tests, the system produced an accurate output.
However, the approach still has two shortcomings: first, it lacks a statistic
evaluation of the system’s performance; i.e., it is unclear how successful the
approach has been. Second, existing URIs are linked to subjects and objects,
but for relations, no existing URIs are available new ones are introduced.

My Bachelor’s thesis tackles both these issues. The original LODifier system
is improved, as existing URIs are searched and linked to relations. Afterwards,
an evaluation is performed to measure the coverage of the modified LODifier
system.

21

4.2. IMPROVED SYSTEM CHAPTER 4. SYSTEM

4.2. Improved System

In order to improve LODifier, existing URIs are searched and when found,
linked to relations. An important decision at this point is from what vocabulary
URIs are taken. The criteria for choosing a vocabulary are that is contains URIs
for relations, that it is possible to determine which URI to assign to which
relation and that the vocabulary is published as linked open data (see also
section 2.3 on linked open data) and thus interlinked to other vocabularies.

Two different approaches are pursued: The interlinking of Boxer relations
with DBPedia properties (section 4.2.1) and the interlinking of Boxer relations
with of RDF WordNet class types (section 4.2.2). Finally, RDF triples are created
and the new URIs are interlinked (section 4.2.3).

4.2.1. Assigning DBPedia URIs to Boxer relations

DBPedia contains a data set consisting of about 8000 different property types.
The data set is created by extracting properties from infoboxes and templates
within Wikipedia articles. The Raw Infobox Property Definition Set consists of a
URI definition for each property as well as a label.

This approach of assigning DBPedia properties to Boxer relations was
discarded. This happened for two reasons: Firstly, the property data set only
contains a very limited range of possible relations, namely those which also
occur in Wikipedia infoboxes and templates. This means, that only a few of
the Boxer relations could be linked to DBPedia properties.

Secondly, the property types are not cleaned and therefore very noisy. The
property name is often just an abbreviation and the label doesn’t contain more
information than the URI itself. In addition, property names are not merged,
so there are sometimes different property names for the same property type.
Property names describing verbs are most often only available in the passive
form. Because these data are so noisy;, it is really difficult to decide which URIs
to assign to which relation.

4.2.2. Assigning RDF WordNet URIs to Boxer relations

The second approach is to interlink Boxer relations with RDF WordNet class
types. WordNet is a lexical database for the English language. WordNet con-
tains entries for nouns, verbs, adjectives and adverbs. Each word has different

22

4.2. IMPROVED SYSTEM CHAPTER 4. SYSTEM

word senses. For a more detailed description of WordNet, see chapter 2.6.
For using WordNet to assign URIs to Boxer relations, an RDF version of Word-
Net is required. There are two RDF versions of WordNet available. One is a
mapping from WordNet 2.0 to RDF (van Assem et al., 2006) and the other one
is a mapping from WordNet 3.0 to RDF (van Assem and van Ossenbruggen,
2011).

RDF WordNet has several URIs for each word, which represent the differ-
ent word senses. To determine, which one to use, the words have to be
disambiguated first. This is done using ukb (Agirre et al., 2009), a WSD tool.

UKB

UKB is a word sense disambiguation tool that performs graph-based WSD
with the full graph of WordNet. For each word in a sentence it returns the
most likely WordNet sense. UKB performs at a precision of roughly 58%.

For using ukb, the input sentence has to be preprocessed. UKB expects the
representation of each input word to have the following form:

lemma#pos#id#d

These four variables mean the following: lemma is the lemma of the word.
pos is the part of speech tag (POS tag) of the word. The possible POS tags are n
(noun), v (verb), a (adjective) and r (adverb). The distinct ID of a word is id,
which can be picked freely, d is a Boolean variable which indicates if the word
should be disambiguated, in which case the variable is 1 or if it should not be
disambiguated, in which case the variable is 0.

An example input for the sentence Google buys YouTube. is displayed in figure
4.5

ctx_01
google#n#wl#l buy#v#w2#1 youtube#n#w3#1

Figure 4.5. UKB input for test sentence Google buys YouTube.

So to convert an input sentence to the ukb input format, the lemma and
POS tag have to be determined for each word in the sentence. This is done by
using the parser output of C&C, which already contains a lemma and a Penn

23

4.2. IMPROVED SYSTEM CHAPTER 4. SYSTEM

Treebank POS tag for each word (see also the sample output of C&C parser in
tigure 4.2). Then, the Penn Treebank POS tags only have to be mapped to of
ukb accepted POS tags (1, v, 4, 7).

The input sentences can then be disambiguated with ukb. The output
format of each word in the sentence is the following;:

context_id word_id (concept_id(/weight)?)+ !! lemma

The line consists of a context ID, a word ID, the most likely WordNet sense
and a lemma. For the sample sentence “Google buys YouTube”, the ukb output
is displayed in figure 4.6

ctx_01 wl 06578905-n !! google
ctx_01 w2 02207206-v !! buy

Figure 4.6. UKB output for test sentence Google buys YouTube.

As one can see, a sense is only returned for google and buy. This is because
there is no WordNet entry for youtube, in which case ukb does not return a
line for the word.

RDF WordNet

After the input sentence is disambiguated with ukb, RDF WordNet is used
to get URISs for the corresponding senses. As mentioned before, RDF Word-
Net exists for WordNet versions 2.0 and 3.0. UKB comes with precompiled
knowledge bases for WordNet 1.7 and WordNet 3.0, so the latest RDF WordNet
version 3.0 is used.

RDF WordNet contains all the information about words and word senses
and relations between them that is also available in WordNet. However, the
only information needed for extracting URIs are the word sense definitions.
RDF WordNet word sense URIs have the following format:

wn30:wordsense-LEMMA-POS-NR

LEMMA is the lemma of the word, POS is the word class and NR is the
sense number. RDF WordNet contains the word classes noun, verb, adverb,
adjective and adjectivesatellite.

24

4.2. IMPROVED SYSTEM CHAPTER 4. SYSTEM

To get an RDF WordNet URI, the ukb output is now interpreted and a URI is
formed. The easiest part is the LEMMA, which can be directly extracted from
the ukb output. The NR which is the sense number can however not be directly
extracted, since the ukb output only contains the word sense. To get the sense
number, the WordNet 3.0 dictionary which is used by ukb can be utilized. In
the WordNet 3.0 dictionary, each word is mapped to the corresponding word
senses of all word classes. The entry of the word buy looks like this:

buy 13253751-n:0 02207206-v:102 02284096-v:2 02646757-v:0 02212103-v:0
00683670-v:0

To get the sense number for a word sense, the word senses have to be
numbered consecutively like this: For the respective word class, the word
senses have to be counted starting with zero until the desired word sense is
reached.

The word class POS can be mainly derived from ukb output. The only
problem is the distinction made by RDF WordNet between the word classes
adjective and adjectivesatellite. This distinction is not made by ukb.

To get the right word class, the full list of word senses is searched. The
information available for the search is the lemma and the corresponding sense
number. If both an adjective and an adjective satellite are available for a lemma
with the same sense number (which is highly unlikely), the adjective is used
since adjectives are generally more frequent.

4.2.3. Generating RDF triples

After the RDF WordNet URIs are generated, RDF triples are generated.
The process of generating RDF triples starts similar to the one described in
chapter 4.1.3. This means, the input text is processed with Wikifier, C&C and
Boxer and DBPedia URIs are inserted. What is different from this process is
that in the improved LODifier system, RDF WordNet URIs are now inserted.
But because there are already DBPedia URIs linked to subjects and objects,
RDF WordNet URIs are only used for the relations. This means that RDF
WordNet URIs for nouns are not used.

Figure 4.7 shows an example for the LODifier output of the improved
LODifier system for the test sentence Google buys YouTube.

25

4.2. IMPROVED SYSTEM CHAPTER 4. SYSTEM

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
Oprefix drsclass: <http://example.org/drsclass/> .

Oprefix drsrel: <http://example.org/drsrel/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix wn30: <http://purl.org/vocabularies/princeton/wn30/> .
@prefix dbpedia: <http://dbpedia.org/page/> .

_:var0x0 drsclass:named dbpedia:Google .

dbpedia:Google rdf:type foaf:0rganization .

_:varOxl drsclass:named dbpedia:YouTube .

dbpedia:YouTube rdf:type foaf:0rganization .

:varOx2 rdf:type drsclass:event .

:varOx2 rdf:type wn30:wordsense-buy-verb-1 .

:varOx0 drsrel:agent :var0Ox2 .

:varOx1 drsrel:patient :varOx2 .

Figure 4.7. LODifier output of the improved LODifier system for test sentence
“Google buys YouTube”.

26

Chapter 5.

Evaluation

In this section, the evaluation of the improved version of LODifier is described.
The goal of the evaluation is to determine if the LODifier output could be
used as basis for an information retrieval task. The first part of the evaluation
process is the manual generation of a corpus (see section 5.1). In section 5.2,
the evaluation procedure is described and the results are presented in section
5.3.

5.1. Corpus

Unfortunately, no gold standard is available for this task to evaluate against.
So, a corpus is manually created for evaluation. Since the C&C parser and
Boxer are both trained on news data, the corpus data are collected in the same
domain.

The data was collected from Google News, where a news article contains links
to other articles with the same topic. In total, the evaluation set consists of
25 articles. This set is divided into five subsets of 5 articles each. These 5
articles share a common topic. For each pair of similar articles, equal relations
in these articles were manually identified. The relations usually had different
representations. For the relation has_daughter, this could be A has_daughter B
or B daughter_of A. Sentences not relevant to the relations were deleted and
articles were split in sub articles where possible. Each sub article was then
processed with LODifier and the resulting RDF triples were saved in separate
files. A graph was created from each file. In total, the evaluation set contains
180 relations.

27

5.2. PROCEDURE CHAPTER 5. EVALUATION

5.2. Procedure

The evaluation was carried out by three annotators. The third annotator only
annotated the data the two other annotators did not agree on. The task was
to search the LODifier output files or the graph version of the output files
for the relations that occurred in the articles. The annotators received a list
of all relations for each pair of sub articles of a topic, the content of the sub
articles and the RDF and graph output files. Then, they should write down for
each relation if they could find the relation in the RDF representation or not.
The annotators were told that it was not important, if Named Entities were
properly recognized or if the correct word senses were chosen.

For comparing the results, a string match baseline was computed. The
reason for choosing this baseline is to determine whether more information
can be retrieved from text when the text is transformed into a more structured
format, namely RDF.

Each representation of the relations was transformed into a regular expres-
sion. As an example, the relation has_daughter between the entities A and B
could have the representations A daughter B, B daughter A, A B daughter, B A
daughter, daughter A B. The representation is, however, only counted as valid
and transformed into a regular expression, if A and B are nearest neighbors
of the relation. This means, that no other entity C may be located between A
or B and the relation. The most frequent representation of the relation is then
deemed the canonical representation. The baseline for each relation is thus
computed as the number of canonical representations divided by 5, which is
the total number of equal representations per relation.

5.3. Results

The inter-annotator agreement was 76.1%, which is certainly a good result
considering the difficulty of the task. Of all the 180 relations in the corpus,
130 were recognized, which equals to a coverage of 72.2%. Compared to the
baseline, which is 36.1%, the coverage has doubled. Separate tables containing
evaluation results for each relation can be found in the appendix D.

28

5.4. DiscussioN CHAPTER 5. EVALUATION

5.4. Discussion

Although the evaluation results a great improvement over the baseline, there
are certain error patterns that occurred. The first very common error is that
Boxer fails to dissolve genitives correctly. If the phrase is, e.g., a friend’s baby
daughter, the RDF graph should contain a link between baby and daughter and
between friend and baby daughter. Unfortunately, the RDF graph only contains a
link between friend’s daughter and baby. This means that the daughter of relation
can’t be recognized.

Another related error is that complex named entities are not dissolved
correctly. The complex named entity Black Panther Geronimo Pratt consists
of two named entities: Black Panther and Geronimo Pratt. In the RDF graph,
however, these two named entities are not linked to separate blank nodes, but
only to a single one.

But this is not the only error considering named entities: two identical
named entities are often not recognized as identical by Boxer, so two separate
discourse referents are introduced which leads to two separate nodes in the
RDF graph.

Since Boxer doesn’t recognize similar named entities as similar, it is no
surprise that anaphoras are also rarely resolved properly. If sentences contain
long distance dependencies, Boxer sometimes fails to dissolve them correctly.
The result is that the arguments of the relation are not connected anymore in
the RDF graph.

29

Chapter 6.

Conclusions

In this Bachelor’s thesis, I have shown an approach to automatically generate
RDF triples out of text combining deep semantic analysis with named entity
recognition and word sense disambiguation techniques as well as vocabulary
from well-formed knowledge bases. I have provided the theoretical back-
ground knowledge, described the resources as well as tools used and defined
the method. An evaluation to identify the strengths and weaknesses of the
approach was also performed and described.

For future work, the results of the evaluation can be taken into account. A
lot of improvement is probably possible concerning the handling of named
entities. As already mentioned, Boxer often does not equate similar named
entities. The benefit of LODifier is that named entities are not only recognized
using the built-in named entity recognizer of Boxer, but that named entities are
also recognized using Wikifier and linked to DBPedia URIs. Those DBPedia
URIs that are the same for similar named entities could then be used to reduce
multiple blank nodes that refer to the same entity to one blank node.

Another improvement that could be made to named entity processing using
the DBPedia URIs concerns the issue of complex named entities. Complex
named entities are often not linked to separate blank nodes, but only to a
single one. If there are now seperate DBPedia URIs for the seperate named
entities entailed in the complex named entity, the blank node could be split
into these parts.

Other errors LODifier produces are caused by common computational
linguistic issues and cannot be eliminated that easily. These are therefore
ceded for future research.

30

References

Agirre, E., de Lacalle, O. L., and Soroa, A. (2009). Knowledge-based WSD and
specific domains: performing over supervised WSD. In Proceedings of the
International Joint Conferences on Artificial Intelligence,] CAI'2009, Pasadena,
USA.

Bedini, I. and Nguyen, B. (2007). Automatic Ontology Generation: State of the
Art. Technical report, University of Versailles.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The Semantic Web. In
Scientific American, pages 96-101.

Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and
Hellmann, S. (2009). DBpedia - A crystallization point for the Web of Data.
Web Semant., 7:154-165.

Byrne, K. and Klein, E. (2009). Automatic extraction of archaeological events
from text. Technology.

Clark, S. and Curran, J. R. (2007). Wide-Coverage Efficient Statistical Parsing
with CCG and Log-Linear Models. Computational Linguistics, 33(4):493-552.

Curran, J. R, Clark, S., and Bos, J. (2007). Linguistically Motivated Large-Scale
NLP with C&C and Boxer. In Proceedings of the ACL 2007 Demonstrations
Session, ACL'2007 demo, pages 33-36.

Curran, J. R., Clark, S., and Bos, J. (2011). Syntax of Discourse Representa-
tion Structures. http://svn.ask.it.usyd.edu.au/trac/candc/wiki/DRSs.
[Online; accessed July 12, 2011].

Gruber, T. R. (1993). Toward principles for the design of ontologies used for
knowledge sharing. In International Journal of Human-Computer Studies, pages
907-928. Kluwer Academic Publishers.

31

http://svn.ask.it.usyd.edu.au/trac/candc/wiki/DRSs

REFERENCES

Harrington, B. and Clark, S. (2007). Asknet: Automated semantic knowledge
network. In AAAI, pages 889-894. AAAI Press.

Heim, P.,, Lohmann, S., and Stegemann, T. (2010). Interactive Relationship Dis-
covery via the Semantic Web. In Proceedings of the 7th Extended Semantic Web
Conference (ESWC 2010), volume 6088 of LNCS, pages 303-317, Berlin/Hei-
delberg. Springer.

Hitzler, P.,, Sebastian, R., and Krotzsch, M. (2009). Foundations of Semantic Web
Technologies. Chapman & Hall/CRC, London.

Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Model-
theoretic Semantics of Natural Language, Formal Logic and Discourse Represen-

tation Theory, volume 42 of Studies in Linguistics and Philosophy. Kluwer,
Dordrecht.

Klyne, G. and Carroll, J. J. (2004). Resource Description Framework
(RDF): Concepts and Abstract Syntax. http://www.w3.org/TR/2006/
WD-wordnet-rdf-20060619/.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications
of the ACM, 38:39-41.

Milne, D. and Witten, I. H. (2008). Learning to link with Wikipedia. In
Proceedings of the ACM Conference on Information and Knowledge Management,
CIKM2008, Napa Valley, California.

Milne, D. and Witten, 1. H. (2011). Wikify service. http://wdm.cs.waikato.
ac.nz:8080/service?task=wikify. [Online; accessed July 12, 2011].

Park, J., Cho, W., and Rho, S. (2007). Evaluation framework for automatic
ontology extraction tools: an experiment. In Proceedings of the 2007 OTM con-
federated international conference on On the move to meaningful internet systems -
Volume Part I, OTM’07, pages 511-511, Berlin, Heidelberg. Springer-Verlag.

Ramakrishnan, C., Kochut, K. J., and Sheth, A. P. (2006). A Framework for
Schema-Driven Relationship Discovery from Unstructured text. In Proc. 5th
International Semantic Web Conference, pages 583-596.

van Assem, M., Gangemi, A., and Schreiber, G. (2006). WordNet 2.0 in
RDF/OWL. http://www.w3.org/TR/wordnet-rdf/. [Online; accessed July
12, 2011].

32

http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/
http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/
http://wdm.cs.waikato.ac.nz:8080/service?task=wikify
http://wdm.cs.waikato.ac.nz:8080/service?task=wikify
http://www.w3.org/TR/wordnet-rdf/

REFERENCES

van Assem, M. and van Ossenbruggen, J. (2011). WordNet 3.0 in RDF. http:
//semanticweb.cs.vu.nl/lod/wn30/. [Online; accessed July 12, 2011].

Wojtinnek, P-R., Harrington, B., Rudolph, S., and Pulman, S. (2010). Con-
ceptual knowledge acquisition using automatically generated large-scale
semantic networks. In Croitoru, M., Ferré, S., and Lukose, D., editors, ICCS,
volume 6208 of Lecture Notes in Computer Science, pages 203-206. Springer.

33

http://semanticweb.cs.vu.nl/lod/wn30/
http://semanticweb.cs.vu.nl/lod/wn30/

Appendix A.

Syntax of Boxer Output

Boxer Syntax

Explanation

topic

thing
person
event
group
reason
manner
proposition
unit of time

elliptical noun phrases

used in NP quantifiers: something, etc.

used in first-person pronouns, who-questions
introduced by main verbs

used for plural descriptions

used in why-questions

used in how-questions

arguments of propositional complement verbs
used in when-questions

Table A.1.

location used in there insertion, where-questions
quantity used in how many
amount used in how much
degree
age
neuter used in third-person pronouns: it, its
male used in third-person pronouns: he, his, him
base
bear
One-place predicates

34

APPENDIX A. SYNTAX OF BoxErR OuUuTPUT

Boxer Syntax Explanation

rel general, underspecified type of relation

loc_rel locative relation

role underspecified role: agent,patient,theme
member used for plural descriptions

agent subject

patient semantic object, subject of passive verbs
theme indirect object

Table A.2. Two-place predicates

35

Appendix B.

Source Code

This section describes the format of the LODifier source code, which can be
found on the CD.

The LODifier source is located in the folder lodifier. The different packages
of LODifier are located in the subfolder src. In the pipeline package, all the
different components of LODifier are called. The ner package contains the
Wikifier module, preprocessing contains the tokenizer, C&C and Boxer modules,
wn contains the WordNet component and rdf contains the RDF conversion
module. Other packages are ui, which contains the User Interface, data which
stores the output data, io, which contains methods for reading and writing
files and conf which contains the configuration files.

For running LODifier, consult the README-file, which contains information
on necessary adjustments. A more detailed description of the source code is
available as Javadoc in the subfolder doc.

36

Appendix C.

Evaluation Data

This section describes the format of the evaluation data, which can be found
on the CD.

The evaluation data are located in the folder evaluation. The subfolder eval in
contains all preprocessed input files. Each file has a header which contains
relations that appear in all articles. The header is followed by the cropped
article text of all five related articles. Each article again has a header that
specifies the newspaper and date. The subfolder eval_out contains the output
RDF and graph files sorted by evaluation set.

37

Appendix D.

Evaluation Results

Set 1
Number Relation LODifier Baseline
1 A has B 0.8 0.2
2 A has estranged B 0.8 0.2
3 A’s B is guilty of C 0.8 0.2
4 A’s Bis guilty of Cof D 0.8 0.2
5 E has D 0.2 0.4
6 D is one year old 0.4 0.4
7 D fell 0.6 0.2
8 D fell out of F 0.6 0.2

0.625 0.25

Table D.1. Results for coverage of data set 1

38

APPENDIX D. EVALUATION RESULTS

Set 2

Number Relation LODifier Baseline
1 A is former B 0.2 04

2 A died 0.8 0.6

3 A died in C 0.8 0.2

4 A died in a small C 0.8 0.2

5 AdiedinasmallCinD 0.8 0.2

6 A wasin E 0.8 0.6

7 A was in E for 27 years 0.8 0.6

8 A wasin E for F 0.8 0.6

0.725 0.425
Table D.2. Results for coverage of data set 2
Set 3

Number Relation LODifier Baseline
1 AisaB 1 1

2 A hasaC 04 0

3 A denied D of raping E 0.8 0.8

4 A is from F 1 1

5 A is 52 years old 1 0

6 A was aquitted of G 1 1

0.867 0.633

Table D.3. Results for coverage of data set 3

39

APPENDIX D. EVALUATION RESULTS

Set 4
Number Relation LODifier Baseline
1 28 A were killed 1 0.6
2 28 A were killed in B 1 0.2
3 B was in C 1 04
4 B was between two rival D 1 04
5 B was between E 1 0.4
1 04
Table D.4. Results for coverage of data set 4
Set 5
Number Relation LODifier Baseline
1 Ais29 yearsold 1 0.4
2 A is from B 1 0.2
3 AisaC 1 0.4
4 A joins D 1 04
5 AjoinsDasaE 1 0.4
1 0.36

Table D.5. Results for coverage of data set 5

40

	1 Introduction
	2 Background
	2.1 Semantic Web
	2.2 RDF
	2.3 Linked Open Data
	2.4 Ontologies
	2.5 DBPedia
	2.6 WordNet

	3 Related Work
	3.1 Existing Systems
	3.2 Conclusion

	4 System
	4.1 Initial System
	4.1.1 Recognizing subjects and objects
	4.1.2 Recognizing relations
	4.1.3 Generating RDF triples
	4.1.4 Linking DBPedia URIs to Boxer classes
	4.1.5 Conclusion

	4.2 Improved System
	4.2.1 Assigning DBPedia URIs to Boxer relations
	4.2.2 Assigning RDF WordNet URIs to Boxer relations
	4.2.3 Generating RDF triples

	5 Evaluation
	5.1 Corpus
	5.2 Procedure
	5.3 Results
	5.4 Discussion

	6 Conclusions
	References
	A Syntax of Boxer Output
	B Source Code
	C Evaluation Data
	D Evaluation Results

