
Statistical Knowledge Patterns for Characterising
Linked Data

Eva Blomqvist1, Ziqi Zhang2, Anna Lisa Gentile2,
Isabelle Augenstein2, and Fabio Ciravegna2

1 Department of Computer and Information Science, Linköping University, Sweden
2 Department of Computer Science, University of Sheffield, UK

eva.blomqvist@liu.se,

{z.zhang,a.l.gentile,i.augenstein,f.ciravegna}@dcs.shef.ac.uk

Abstract. Knowledge Patterns (KPs), and even more specifically Ontology De-
sign Patterns (ODPs), are no longer only generated in a top-down fashion, rather
patterns are being extracted in a bottom-up fashion from online ontologies and
data sources, such as Linked Data. These KPs can assist in tasks such as mak-
ing sense of datasets and formulating queries over data, including performing
query expansion to manage the diversity of properties used in datasets. This paper
presents an extraction method for generating what we call Statistical Knowledge
Patterns (SKPs) from Linked Data. SKPs describe and characterise classes from
any reference ontology, by presenting their most frequent properties and property
characteristics, all based on analysis of the underlying data. SKPs are stored as
small OWL ontologies but can be continuously updated in a completely automated
fashion. In the paper we exemplify this method by applying it to the classes of the
DBpedia ontology, and in particular we evaluate our method for extracting range
axioms from data. Results show that by setting appropriate thresholds, SKPs can
be generated that cover (i.e. allow us to query, using the properties of the SKP)
over 94% of the triples about individuals of that class, while only needing to care
about 27% of the total number of distinct properties that are used in the data.

1 Introduction

Originally, the notion of Ontology Design Patterns (ODPs) referred only to a top-
down view on modelling best practices, and constituted manually designed patterns
representing those best practices. More recently, however, Knowledge Patterns (KPs), as a
generalisation of ODPs and other patterns, have also been created in a bottom-up fashion,
i.e., representing the way information on the Web or Linked Data is actually represented,
rather than how it “should” be represented according to some best practice. This paper
follows the more recent tradition and presents what we call Statistical Knowledge
Patterns (SKPs), which aim to characterise concepts that exist within Linked Data
based on a statistical analysis of those data. Since the SKPs are wholly based on the
characteristics of data itself, their construction is a completely automatic process, which
means that they can be kept up-to-date with respect to data without any manual effort.

In a related paper [15] we have presented the details of the initial steps of the SKP
generation method, with specific focus on discovering relations that are (to some extent)

synonymous, and evaluating that part of the extraction in the context of query expansion.
In this paper we instead focus on the pattern extraction method as a whole, and the
resulting resource, i.e., the pattern catalogue, and in particular discuss the parts of the
method not covered by the previous paper. In Section 2 we first present some related work
on ODP generation from different sources. We then briefly present our SKP extraction
method in Section 3, and exemplify the resulting SKPs in Section 4. In Section 5 we show
through some empirical findings that the SKPs fulfill their purpose, i.e., characterise and
provide access to the underlying data, but in particular we study and evaluate the range
extraction method. Finally, in Section 6 we discuss some general implications of this
research, and in Section 7 we provide conclusions and outline future work.

2 Related Work

Ontology Design Patterns (ODPs) were originally conceived for the task of ontology
engineering, and in particular were intended to encode general best practices and mod-
elling principles in a top-down fashion [5,6]. Since then several kinds of patterns have
been proposed, such as Content Ontology Design Patterns (CPs) [7]. CPs focus on
domain-specific modelling problems and can be represented as small, reusable pieces of
ontologies. CPs are similar to the SKPs presented in this paper, in the way that they also
represent concepts with their most distinguishing characteristics. Unlike SKPs however,
CPs are usually created manually, and since they are abstract patterns intended for being
used as “templates” in ontology engineering they usually lack any direct connection to
data and cannot directly (without manual specialisation) be used for querying Linked
Data. Since CPs represent an abstract top-down view, they additionally do not consider
aspects such as diversity and synonymy among properties, which is one of the benefits
that our proposed SKPs display.

The approach closest to our SKPs is the Encyclopedic Knowledge Patterns (EKPs)
[11], which were intended mainly for use in an exploratory search application [9,10].
The EKP generation process exploits statistics about link-usage from Wikipedia3 to
determine which relations are the most representative for each concept. The assumption
is that if instances of a target concept A frequently link to instances of concept B, then
concept B is an important concept for describing instances of A. This information is
then formalised and stored as small OWL ontologies (the EKPs), each having one main
class as their focus and all its significantly frequent relations (based on the wiki-link
counts) to other classes represented as object properties of the main class. The main
purpose of these EKPs is presenting relevant information to a human user, e.g., the
ability to filter out irrelevant data when presenting information about DBpedia entities,
while the ability to query for data is not a primary concern. This is reflected by the fact
that EKPs mainly contain abstractions of relevant properties, such as “linksToClassB”,
where linksToClassB expresses the fact that the pages in Wikipedia representing
instances of concept A (the class in focus of the EKP) commonly links to pages in
Wikipedia representing instances of concept B (links which could in many cases in turn
be represented by various DBpedia properties, but not necessarily). This is however
not sufficient for our case, since our main goal is to use our SKPs to characterise

3 http://en.wikipedia.org

and give effective access to actual data. In such a use case one needs to be able to
distinguish between, for instance, different properties that link instances of the same
classes but have different meaning (e.g., birth place and death place, which both link a
person to a location). Hence, we propose an extension of the existing EKPs, which also
include a sufficient coverage of actual properties of the underlying datasets, together
with additional features we attach to each of those properties, such as range axioms.

There exist other approaches aiming to statistically characterise datasets, such as the
one by Basse et al. [3], which also exploits statistics from a specific dataset to produce
topic frames of that dataset. In contrast to Nuzzolese et al. [11] they do not produce a
pattern for each class but rather generate clusters of classes (up to 15 classes each) that
reflect main topics of the dataset. For giving access to data (querying), however, the main
focus needs to be on the properties of the classes, rather than the classes themselves.
Also Atencia et al. [1] perform statistical analyses on datasets, but for the purpose of
detecting key properties (i.e., to be expressed through the OWL2 notion of “key”) rather
than characterising the complete property landscape of a class. A related approach is also
the LODStat framework [2], which has the broader scope of extracting an publishing
many kinds of interesting statistics about datasets. While that framework also takes
into account statistics on property usage, and declaratively represents the statistics, the
approach is focused on per-dataset statistics, rather than per-class, and does not induce
new information (e.g., synonymity or new range axioms) from the extracted statistics.

Looking at patterns from a more general perspective, however, Knowledge Patterns
(KPs) have been defined as general templates or structures used to organise knowledge
[8], which can encompass both the “traditional” view of ODPs and more recent effort
such as EKPs and our SKPs. In the Semantic Web scenario they are used both for
constructing ontologies [4,7,13] and for using and exploring them [3,9,10,11,12]. Presutti
et al. [12] explore the challenges of capturing Knowledge Patterns in a scenario where
explicit knowledge of datasets is neither sufficient nor straight-forward, which is the case
for Linked Data. They propose a dataset analysis approach to capture KPs and support
datasets querying. Our SKPs expand on this work as not only do we capture direct
statistical information from the underlying datasets, but also further characterise relevant
properties with additional features (e.g., synonymous properties and range axioms),
which is highly beneficial for querying the datasets.

3 SKP Construction Method

A Statistical Knowledge Pattern (SKP) is an ontological view over a class that sum-
marises the usage of the class (hereafter called the main class of the SKP) in data. The
main class of an SKP can be seen as the “focus”, or the context, of that SKP, hence,
each SKP has exactly one main class. The term “statistical” refers to that the pattern
is constructed based on statistical measures on data. Each SKP contains: (1) properties
and axioms involving the main class that relates it to other classes, derived from a
reference ontology or from a pre-existing EKP characterising that class; (2) properties
and axioms involving the main class that are not formally expressed in the reference
ontology, but which can be induced from statistical measures on statements published as

Linked Data. The information from (1) and (2) is consolidated in the form of an SKP,
which is represented and stored as a small OWL ontology.

More formally, let the main class of an SKP be cmain, which is a class of the se-
lected reference ontology – in fact, this is the only thing we need from the reference
ontology, hence, the ontology can simply consist of one or more class URIs if noth-
ing else is available, as long as there is some data using that class. The main class is
the starting point for extracting an SKP, hence, it is selected before the construction
process begins, and normally one would build SKPs for as many of the classes in the
reference ontology as possible (or for the classes that are of specific importance in some
use case). The SKP of cmain contains the set of properties from the reference ontology
Pont = {pont1 . . . pont−n} and the set of properties from any pre-existing EKP of the main
class Pekp = {pekp1 . . . pekp−m}, with the requirement that only properties that are actually
used in data (or have relations to properties that are actually used in data, see further
below, are included). A property from the reference ontology or an EKP, pi may have a
set of “synonymous properties” SPi induced from data. The decision on synonymity of
properties is based on a synonymity measure (described in detail in [14]), hence, almost
none of the properties are actual synonyms (i.e., with a maximum score) but rather
represent properties that are to some extent exchangeable in the particular context of the
main class. While we will continue to use the term “synonymous properties” throughout
this paper, the reader should bear in mind that these are rarely perfect synonyms, but
rather “close matches” (as we shall see later, this is also represented in the resulting
model through skos:closeMatch rather than equivalence). To decide which properties,
or synonym clusters of properties, should be selected to be included in the SKP, their
relevance is measured based on the frequency of usage of the properties in available
Linked Data.

In practice, since SKPs are an extension of EKPs [11], if an EKP already exists it can
be used as an abstract frame for the concrete properties and axioms that are added through
our SKP generation method. In particular, we use the abstract properties introduced by
EKPs (i.e., “links to class X”) in order to group properties with range axioms overlapping
the general EKP property, to give the SKP a more intuitive structure and improve human
understandability of the pattern. The properties are thereby organised in two hierarchical
layers, through the rdfs:subPropertyOf relation, where, in particular, domain and
range restrictions of properties are used to induce sub property relations between the very
general properties of a pre-existing EKP and the properties retrieved from data. Note
that we are, at this point, not attempting to induce a sub-property structure among the
properties found in data, hence, we only group them under the general EKP properties.
A more elaborate structuring of the extracted properties is still part of future work.

The most important characteristics of SKPs and their generation are:

– SKPs encode class-specific characterisations of properties that are commonly used
with individuals of that class, i.e., synonymous properties, ranges, etc. are all specific
to the use of the properties with instances of that class, which provides an interesting
and detailed account of property meanings and usage in Linked Data. For example,
the same property may be present in several SKPs, but with distinct range axioms,
and as part of separate property synonym clusters, depending on that the property is
used differently with instances of the respective main class of each SKP.

– Synonymous (i.e., to some extent interchangeable) properties are identified, and in-
formation about them are stored to be reused; one possible usage is query expansion,
when querying the data underlying the SKP. See [15] for details.

– Ranges are identified for properties that have no range in the reference ontology,
hence, showing the actual use of the property in data, which can be used to restrict
property selection when building a query or to filter out unwanted data at query-time.

– The method for SKP generation is fully automated, whereby SKPs can be re-
generated as soon as data changes, without manual effort, but SKPs are in the
meantime used as stored resources, for increased usage efficiency.

The SKP generation process consists of three key components: (1) discovering and
grouping synonymous properties of the main class, (2) selecting properties (and groups
of properties) to include in the SKP, and (3) collecting additional axioms describing
the selected properties, such as rdfs:subPropertyOf relations and domain and range
restrictions, and creating an ontological representation of the SKP.

Synonymity of Properties To create an SKP we identify the properties used for the SKP
main class based on data and measure their synonymity. In [14] we have proposed a
novel synonymity measure of properties. The overall process is:

1. Query the dataset for all the instances (IND) of the main class; query the dataset
for all triples having any i ∈ IND in subject position (we denote this triple set TS)
and additionally collect the types (through querying for rdf:type statements or for a
datatype) of the objects of all those triples.

2. For each property used in TS , collect the subset of IND having the property as
predicate, INDprop, and collect the corresponding objects of each subject in INDprop

– the subject-object pairs of this set represents the characteristics of that property,
given the main class at hand.

3. Do a pairwise comparison of all subject-object pairs of INDprop for all the properties
and calculate a synonymity score for each pair of properties.

4. Use the synonymity scores (representing evidence of properties being interchange-
able) to cluster properties that are likely to represent a sufficiently similar (i.e.,
sufficiently synonymous) semantic relation.

Selection of Properties The aim of the above process is to discover, for each specific
main class, clusters of properties with the same meaning. In practice, a certain number
of properties are found to be noise or non-representative of the main class. Thus, we
further refine the set of properties for each SKP as follows:

5. Calculate the frequencies of properties used in data, i.e., counting distinct objects in
INDprop. For clusters, treat the cluster as if it was a single property hence add the
frequency counts of the constituent properties.

6. Use a cutoff threshold T (explored further in [15]) to filter out infrequent properties
(or clusters), as they may represent noise in the data. Add those above the thresh-
old to the SKP, including information about their appropriate property type (e.g.
owl:DatatypeProperty or owl:ObjectProperty), with their original names-
pace intact.

7. For each member of a property cluster that is added to the SKP, add a skos:closeMatch
relation between the cluster members.

Characterisation of Properties Finally, we add as much information as we can about the
selected properties, based on what we can induce from the data, and retrieve from the
reference ontology or the pre-existing EKP.

8. For each property, add a range axiom that consists of any range that is given to the
property in the reference ontology or the EKP (if present), but if not present instead
add any range that is identified in data (i.e., by looking at the frequencies of the
object types of the triples above a certain threshold).

9. Add rdfs:subPropertyOf axioms for those properties where the ranges match
some abstract EKP property (i.e., the “links to class X” abstract properties).

10. Store the SKP as an OWL file.

More in detail the range extraction method starts by inspecting the types of all the
triple objects in TS that were retrieved at the beginning of the overall process. This is
done on a per-property-basis, i.e., for each property selected for inclusion in the SKP,
which does not have a range axiom defined in the reference ontology, the corresponding
subject-object pairs are again analysed, and this time inspected together with the types
of the objects of those pairs. Assume that the set of distinct objects, for the triples of TS
using a property pi is OBJpi . Now, count the frequency of the types of the instances in
OBJpi , i.e., associating each class (or datatype) type j that is a type of one of the instances
in OBJpi with a count value counttype j . Then calculate the relative frequency of this type,
for the specific property, by dividing counttype j with the total number of distinct objects
of that property, i.e., |OBJpi |. Intuitively, this is a measure of how large fraction of the
triple objects in the set of triples characterising this property that “support” this type
being in the range of pi.

For avoiding to include too much noise in the axiomatisation of the SKPs, a threshold
is set on this “range support” value, i.e., a class should not be included unless it has suffi-
cient support in the data. Where, “sufficient” may differ depending on if one prioritises
precision or recall. We investigate a reasonable trade-off for the relative threshold in
Section 5, however, we also set an absolute threshold (for really small triple sets) not to
include any type that has less than 10 occurrences in the triple set. Since this process
may result in a set of classes being selected as the appropriate range of a property, the
range axiom included in the SKP is then expressed as the union of those classes.

4 Results

The resulting patterns have been published4 in the form of small OWL ontologies. Where
pre-existing EKPs exist, they can be extended with new properties, while if no pre-
existing EKP existed, the SKP is generated completely from scratch. Overall, an SKP
contains the main class that is the focus of the pattern, and the properties that are selected
for that SKP, including their domain and range axioms. The name of the SKP is the same
as the name of the main class. As an example, we illustrate a small part of the resulting
SKP called Language5 in Figure 1, with the main class dbpedia:Language. This is one

4 SKPs are being made available at http://www.ontologydesignpatterns.org/skp/
5 http://www.ontologydesignpatterns.org/skp/Language.owl

of the smallest SKPs generated in our evaluation set (see Section 5), only including 36
distinct properties, distributed over 35 object properties and 1 datatype property. Each
property has kept its original URI, so as to be directly usable for querying data, and is
given the main class of the SKP as domain. In this particular SKP we, for instance, find
properties such as dbpedia:spokenIn, dbprop:region and foaf:name, i.e., coming
from three different namespaces. At a first glance, foaf:name may seem to be an error,
however, this nicely exemplifies the SKPs ability to reflect actual usage in data. The
property was certainly not intended for expressing the name of languages, however, for
this particular class the property is actually used in this way and could be useful to include
when querying for data about languages. Without seeing the SKP, or experimenting with
queries manually, this may be hard to discover.

Fig. 1. Illustration of a small part of the Language SKP. Classes are illustrated as boxes, including
the union classes representing complex ranges, and properties as arrows. An arrow starting from a
class means that is the domain of the property, and the class at the end of the arrow is the range.
The skos:closeMatch-arrows represent assertions on properties.

The property foaf:name is additionally part of a property cluster, which includes
additional properties such as dbprop:name and dbprop:language, which represent
properties that may be considered as synonymous to foaf:name in the context of
the class dbpedia:Language and are linked to each other in the SKP though the
property skos:closeMatch. The property dbprop:language is another good example
of a highly ambiguous property name, which is not easy to interpret, without actually
looking at its detailed use with individuals of this particular class (i.e., individuals of
dbpedia:Language). Another example of a property cluster is the one containing the
object properties dbpedia:spokenIn, dbprop:region, and dbprop:states, which
are all used to express the area, or usually the country, where a language is spoken.

The properties dbprop:region and dbprop:states did not have any prior range
axioms defined, since they are not part of the DBpedia ontology, but rather of the part of
DBpedia that is generated completely automatically without aligning it to the ontology.
As an obvious remedy, one may consider using the range of dbpedia:spokenIn also
for the other members of the cluster. However, not all properties are involved in clusters
that include properties with range axioms in the reference ontology, this is actually
true only for a small fraction of the total number of properties. Hence, although not
absolutely necessary in this case, we may generate range axioms directly from data for
the two properties. The property dbprop:region then, for instance, receives the union
of the following classes as its range: dbpedia:Place, dbpedia:PopulatedPlace,
dbpedia:Settlement, schema:Place and opengis: Feature.

5 Experiments

In the related paper [15] the extraction of synonymous properties was evaluated, together
with the property selection threshold. In this paper we focus on analysing the range
extraction method, but additionally show some general statistics in order to motivate the
usefulness of the SKPs we are proposing. For performing the experiments we selected a
set of 34 DBpedia classes to focus on, and generated SKPs for these. The classes were
not selected randomly, but rather we focused on the DBpedia classes that are involved in
answering the benchmark queries in the QALD-1 query set6, as our evaluation set.

5.1 Pattern Characteristics

SKPs aim at reducing the complexity of understanding and querying data, by reducing
the diversity of properties to only include the core properties of the main SKP class.
However, to be useful in practice, such a reduced representation should still allow for
accessing as large part of the underlying data as possible. This is a trade-off that the
SKPs must be able to sufficiently support if they are to be used in practice. To illustrate
that the SKPs do fulfill both these requirements sufficiently well, Table 1 presents some
statistics of the set of 34 SKPs in our evaluation set.

Min Average Max
Number of included properties 31 107 436
Percentage of included properties 12% 27% 38%
Percentage of data triples covered 88% 94% 97%

Table 1. Characteristics of the generated SKPs

The patterns range in size (in terms of the number of properties of the main class)
between 31 and 436 properties. While 436 properties may be perceived as a large number,

6 QALD-1 contains a “gold standard” of natural language questions associated with ap-
propriate SPARQL queries and query results, see: http://greententacle.techfak.
uni-bielefeld.de/˜cunger/qald1/evaluation/dbpedia-test.xml

this should be considered in light of the second row of the table, i.e. the fraction of
the total number of properties used for that main class in the data that the included
properties represent. For instance, the largest pattern, with 436 properties included,
is the AdministrativeRegion pattern characterising the AdministrativeRegion
class in the DBpedia ontology, which in total uses 1235 distinct properties with its 28229
instances in the DBpedia dataset. Hence, those 436 properties constitute only 35% of the
total number of distinct properties, but still allows us to access 89% of the data triples,
about AdministrativeRegion instances. In the last row of the table we summarise
similar results for the complete SKP set, i.e., on average the SKPs allow us to still
access 94% of the data about their instances, while reducing the number of properties
to on average 27% of the original number. One should also keep in mind that these are
SKPs generated with a particular property inclusion threshold (see [15] for a detailed
evaluation and discussion of the threshold), whereby tailored sets of SKPs could also be
generated with a specific use case in mind, prioritising either triple coverage or reduced
size of the SKP as needed.

We have not yet evaluated how the accuracy of the data, and responses to queries,
are affected by filtering out some portion of the properties used in data. This is mainly
due to the difficulty of evaluating the quality of data in DBpedia in general, i.e., what is
a correct triple and what is not? Ideally, we would like to be able to measure also how
correct the data is, and evaluate if the data that is no longer accessible (if using only the
SKP property set) is correct and useful data, or perhaps mostly consist of noise. However,
we believe that crowdsourcing efforts such as the DBpedia Data Quality Evaluation
launched, may be able to provide evaluation datasets that makes this feasible.

5.2 Range Extraction

For evaluating the range extraction method, which had to be done manually, a set of
SKPs were selected (among the 34 we initially generated, corresponding to the QALD
query classes). Unfortunately due to lack of evaluators, we were not able to evaluate
the complete set of 34 SKPs, but had to focus on 8 SKPs that were randomly selected
but where we made sure to cover both “small” and “large” SKPs (in terms of number of
properties and range axioms). Using different cutoff thresholds for the inclusion of range
classes, all the resulting proposals for range axioms were manually assessed by three
evaluators (each range axiom was evaluated by at least 2 evaluators). The evaluators
were asked to assess if the range class could be considered correct or not, in the context
of the particular SKP main class, and for the property at hand. Initially, the evaluators
simply assessed if the range class was correct or not (an “unsure” alternative was also
available), but in addition, if deemed correct the evaluators were also asked to assess the
level of abstraction of the range class. The latter, to evaluate if the method used was able
to arrive at range classes that are neither too specific nor too general.

For instance, consider the SKP Actor, where the main class is dbpedia:Actor. This
SKP includes a property dbprop:spouse, which relates an actor to his or her spouse.
One class that is extracted as being part of the property range is the dbpedia:Actor
class. However, despite this being a common type of the objects, it is not an appropriate
range class – it is more of a coincidence that most actors are actually married to other

actors, rather than a general axiom. A more appropriate class to include would be a super-
class of dbpedia:Actor, i.e., dbpedia:Person. On the other hand, more general is not
always better. Consider the superclass of dbpedia:Person, which is dbpedia:Agent
(a class that also includes subclasses such as dbpedia:Organisation). This would
not be an appropriate class either, since there are agents, e.g., companies, that cannot
be the spouse of an actor. Through this example, we note that there is often a level of
abstraction that is the most appropriate for expressing the range axioms, although more
specific or more general classes cannot be considered as “wrong”.

To combine the results of the three evaluators we have classified something as correct
if at least one evaluator considered it correct, and the others either agreed that it was
correct or were not sure. We have classified something as incorrect if, on the contrary,
one evaluator considered it incorrect, and the others either agreed or were not sure. If the
evaluators disagreed, e.g., one considering it correct and one incorrect, or they agree on
the “unsure” alternative, the combined result is classified into the “unsure” category.

In Figure 2 we can see the results of the correctness evaluation of range axioms. On
average, for each SKP, the method is able to find an appropriate range (one or more
classes) for about 8 properties that were to be included in the SKP but that previously
had no range axioms. In the figure we can see that for a cutoff threshold of 0.1 (meaning
that a range class is included if it is the assigned type of more than 10% of the objects
in triples using this specific property, and that are covered by this SKP) already around
80% of the proposed range classes are deemed as correct by the evaluators. This fraction
increases as the cutoff threshold is raised, and at a threshold of 0.5 it is about 87%. As
can be seen, the fractions of incorrect (and unsure) range classes stays well below 10%
for a threshold of 0.3 and higher, and even before that the maximum fraction of incorrect
suggested ranges is only about 12%.

Fig. 2. Correctness of new range axioms, and fraction of properties that still receive a range axiom
as threshold increases.

However, this increase in precision comes at a price of fewer suggested range axioms.
In the figure we have therefore included also the “loss” of range axioms, in terms of the

fraction of the properties where (correct) range axioms were proposed at threshold 0.1,
but which when the threshold is increased no longer will have any range axiom in the
SKP (called “Added ranges” in the diagram). When increasing the threshold above 0.3,
this drop starts to become significant, e.g. going from 96% at the 0.3 threshold down to
91% at 0.4.

An additional drawback when raising the threshold, which is not directly visible
in the figure, is the level of abstraction of the included range classes. In general, the
agreement between evaluators is quite poor when it comes to evaluating the level of
abstraction, and it varies quite a lot between the 8 SKPs that were assessed, hence, we do
not provide any numerical results of this part of the evaluation. Instead, based on the cases
when the evaluators do agree, and the trends in their individual assessments, we try to
summarise some tendencies. The trend is that as the threshold increases, the first (correct,
but not necessarily appropriate with respect to abstraction level) range axioms that are
removed seem to be the ones that are considered too specific (c.f. dbpedia:Actor in the
example above) by at least some evaluator. However, continuing to further increase the
threshold, i.e., from 0.4 and onwards, seems to remove a significant amount of (agreed
on) appropriate range classes as well as the overly general ones, hence, increasing the
threshold too much seems to come with too much negative side-effects in terms of
increasing the fraction of overly general range classes compared to the appropriate ones.

Based on these results, we conclude that, both from the perspective of including as
many correct range axioms as possible without introducing too many errors, and from
the (somewhat inconclusive) indications on appropriate level of generality, a selection
threshold around 0.3 seems to be a reasonable pick. This threshold has been used for
generating the SKPs in the current catalogue.

6 Discussion

Originally, the notion of Ontology Design Patterns (ODPs) referred solely to a top-
down view on modelling best practices, and constituted manually designed patterns
representing those best practices. More recently, however, the more general notion of
KPs has been proposed, and such patterns have also been created in a bottom-up fashion,
i.e., representing the way information on the Web or Linked Data is actually represented,
rather than how it “should” be. It is highly relevant in this context to discuss the relation
between best practices and patterns. Although we do agree that actual modelling patterns,
found in data, do not necessarily conform to best practices, we also acknowledge that
determining what is a “best practice” is very difficult. By investigating real-world data
we observe actual practices, and by storing these as SKPs users are able to understand
the current practice. For many use cases (e.g., querying or linking to data) it is more
important to understand and adhere to current practices, rather than best practices that
may not at all be used in the data at hand. Since our SKPs are dynamic, i.e., can be
re-generated as soon as data changes, we envision that assuming data and model quality
increases over time, the gap between best practices and actual practices is reduced.

Another general aspect of the SKPs that is worth mentioning is their generalisability
over different datasets. Our experiments have so far been limited to DBpedia data,
however, the method we are using is in no way restricted to this particular data. Although

DBpedia may be a particularly tricky dataset (due to its semi-automatic construction,
and large coverage), we have observed that similar problems with duplicated properties
and lack of ranges and other axioms do exist also in other datasets. However, the most
interesting problem arises when starting to extract cross-dataset SKPs, which will be
our next step. To find “synonymous” properties across vocabularies and datasets, and
to be able to compare patterns between overlapping datasets is where we envision
that the substantial benefits arise. The methods presented here are sufficiently general
to be applied to this extended scenario with only minor modifications to the current
implementation.

7 Conclusions and Future Work

KPs are more and more being extracted bottom-up, e.g., from Linked Data, rather than
only being hand-crafted in a top-down fashion, e.g., as ODPs. This new kind of KPs is
important since they can assist in making sense of datasets, and allow users and systems
to formulate appropriate queries over data, while managing the diversity of properties
used in datasets. Diversity of data representation, and lack of agreement on schemas and
ontologies, is currently a major obstacle towards taking full advantage of the Semantic
Web and Linked Data. Therefore, approaches like ours, for characterising and structuring
data (e.g., by identifying synonymous properties and property ranges), are of essence.

This paper has provided an overview of our method for generating SKPs from Linked
Data (details on the synonymy detection and property selection in [14,15]) focusing
particularly on the final part; characterising the properties, e.g., through range axioms.
Generally, SKPs can characterise classes from any reference ontology, by presenting their
most frequent properties and property characteristics, based on analysing the underlying
data. SKPs are stored as OWL ontologies but can be continuously updated in a completely
automated fashion to reflect changes in the underlying data. We have exemplified the
method by applying it to classes of the DBpedia ontology, and in particular we have
thereby evaluated our method for extracting range axioms. Results show that by setting
appropriate thresholds, SKPs can be generated that cover (i.e., allow us to query, using
the properties of the SKP) over 94% of the triples about individuals of that class, while
only needing to care about 27% of the total number of distinct properties that are used in
the data. The range extraction method results in range axioms that are on average correct
in 82% of the cases (merely 10% are clear errors), at the selected threshold level. These
results clearly show that it is possible to make sense of data, and manage the diversity of
Linked Data, by analysing the data and identifying the underlying patterns.

The catalogue of SKPs for the DBpedia classes is being published at the moment.
While this will be an important resource, it is simply one example of a reference ontology
that can be used. As future work we intend to publish the method described in the paper
as a software component to be reused by others, over their dataset of choice. We also
intend to extend the generated set of DBpedia-based SKPs, by taking into account other
datasets that align to DBpedia, creating cross-dataset SKPs that can be used to formulate
queries (and distribute queries) over several dataset. Another interesting line of future
work is to use the SKPs in order to analyse data quality, similar to what is described for
“key properties” in [1], by studying the triples that do not adhere to the pattern.

Acknowledgements

Part of this research has been sponsored by the EPSRC funded project LODIE: Linked
Open Data for Information Extraction, EP/J019488/1.

References

1. Atencia, M., David, J., Scharffe, F.: Keys and pseudo-keys detection for web datasets cleansing
and interlinking. In: Proc. of the 18th International Conference, EKAW 2012, Galway City,
Ireland, October 8-12, 2012. LNCS, vol. 7603, pp. 144–153. Springer (2012)

2. Auer, S., Demter, J., Martin, M., Lehmann, J.: Lodstats - an extensible framework for high-
performance dataset analytics. In: Proc. of the 18th International Conference, EKAW 2012,
Galway City, Ireland, October 8-12, 2012. LNCS, vol. 7603, pp. 353–362. Springer (2012)

3. Basse, A., Gandon, F., Mirbel, I., Lo, M.: DFS-based frequent graph pattern extraction to
characterize the content of RDF Triple Stores. In: Proc. of the WebSci10: Extending the
Frontiers of Society On-Line, April 26-27th, 2010, Raleigh, NC: US [Online proc.] (2010)

4. Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design patterns.
In: Proc. of the 8th International Semantic Web Conference (ISWC 2009). LNCS, vol. 5823,
pp. 65–80. Springer (2009)

5. Blomqvist, E., Sandkuhl, K.: Patterns in ontology engineering: Classification of ontology pat-
terns. In: ICEIS 2005, Proc. of the Seventh International Conference on Enterprise Information
Systems, Miami, USA, May 25-28, 2005. pp. 413–416 (2005)

6. Gangemi, A.: Ontology Design Patterns for Semantic Web Content. In: The Semantic Web
ISWC 2005. LNCS, vol. 3729. Springer (2005)

7. Gangemi, A., Presutti, V.: Handbook on Ontologies, chap. Ontology Design Patterns. Springer,
2nd edn. (2009)

8. Gangemi, A., Presutti, V.: Towards a pattern science for the Semantic Web. Semantic Web
1(1-2), 61–68 (2010)

9. Musetti, A., Nuzzolese, A., Draicchio, F., Presutti, V., Blomqvist, E., Gangemi, A., Ciancarini,
P.: Aemoo: Exploratory Search based on Knowledge Patterns over the Semantic Web (2011),
[Finalist of the Semantic Web Challenge 2011]

10. Nuzzolese, A.G.: Knowledge Pattern Extraction and Their Usage in Exploratory Search. In:
Proc. of the 11th International Semantic Web Conference (ISWC 2012). LNCS, vol. 7650, pp.
449–452. Springer (2012)

11. Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic knowledge patterns
from wikipedia links. In: Proc. of the 10th International Semantic Web Conference (ISWC
2011). pp. 520–536. LNCS, Springer (2011)

12. Presutti, V., Aroyo, L., Adamou, A., Schopman, B.A.C., Gangemi, A., Schreiber, G.: Ex-
tracting Core Knowledge from Linked Data. In: Proc. of the Second International Workshop
on Consuming Linked Data (COLD2011), Bonn, Germany, October 23, 2011. vol. 782.
CEUR-WS.org (2011)

13. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-based ontology design. In: Ontol-
ogy Engineering in a Networked World, pp. 35–64. Springer (2012)

14. Zhang, Z., Gentile, A.L., Augenstein, I., Blomqvist, E., Ciravegna, F.: Mining equivalent rela-
tions from linked data. In: Proc. of the annual meeting of the Association for Computational
Linguistics (ACL) 2013 (2013)

15. Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: Statistical knowl-
edge patterns: Identifying synonymous relations in large linked datasets. In: (To appear)
Proceedings of ISWC2013. LNCS, Springer (2013)

