
Unsupervised Wrapper Induction using Linked Data

Anna Lisa Gentile
University of Sheffield

a.l.gentile@dcs.shef.ac.uk

Ziqi Zhang
University of Sheffield

z.zhang@dcs.shef.ac.uk

Isabelle Augenstein
University of Sheffield

i.augenstein@dcs.shef.ac.uk
Fabio Ciravegna

University of Sheffield
f.ciravegna@dcs.shef.ac.uk

ABSTRACT
This work explores the usage of Linked Data for Web scale
Information Extraction and shows encouraging results on
the task of Wrapper Induction. We propose a simple knowl-
edge based method which is (i) highly flexible with respect
to different domains and (ii) does not require any training
material, but exploits Linked Data as background knowl-
edge source to build essential learning resources. The major
contribution of this work is a study of how Linked Data - an
imprecise, redundant and large-scale knowledge resource -
can be used to support Web scale Information Extraction in
an effective and efficient way and identify the challenges in-
volved. We show that, for domains that are covered, Linked
Data serve as a powerful knowledge resource for Informa-
tion Extraction. Experiments on a publicly available dataset
demonstrate that, under certain conditions, this simple un-
supervised approach can achieve competitive results against
some complex state of the art that always depends on train-
ing data.

1. INTRODUCTION
Information Extraction (IE) is the process of transforming

unstructured or semi-structured textual data into structured
representation that can be understood by machines. With
the exponential growth of data published on the Web, IE is
becoming increasingly important for Web-based knowledge
acquisition tasks. One of the common techniques in Web-
based IE is known as wrappers. In this context, a wrapper
is generally a set of rules designed to extract data from a
specific set of (semi-)structured documents that share struc-
tural similarities. Web pages are typical examples of such
documents. A lot of websites use scripts to generate highly
structured pages for different data records using consistent
templates. For example, a yellow page website will use the
same template to display information (e.g., name, address,
cuisine) of different restaurants. Therefore, inducing wrap-
pers for Web pages can enable extraction of similar data
records in an automatic and effective fashion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
K-CAP ’13, June 23-26, 2013, Banff, Canada.
Copyright 2013 ACM 978-1-45-03-2102-0/13/06 ...$15.00.

Wrapper induction [12, 16, 5, 6, 22] is the task of au-
tomatically learning wrappers using a collection of manu-
ally annotated Web pages as training data. It generally ad-
dresses extracting data from “detail” Web pages [3], which
are pages corresponding to a single data record (or entity)
of a certain type or concept (also called vertical in the lit-
erature) and render various attributes of that record in a
human-readable form. An extensive range of work has been
carried out to study wrapper induction in the past. How-
ever, the task remains challenging for several reasons. First,
wrappers are typically induced based on training examples,
which are manually labelled Web pages of particular web-
sites. Creating such annotations require significant human
effort and remains a bottleneck in the wrapper induction
process [22, 8]. Second, wrappers are typically learnt specific
to a website and largely depends on structural consistency.
Porting wrappers across websites often require re-learnining
[22]; and even very slight change in structures can cause
wrappers to break. Although recent studies [3, 5, 6, 8] have
focused on addressing these two issues, these methods still
depend on manually labelled examples to train a wrapper;
while in some cases [5], even more training data is required
to enhance wrapper robustness.

In this work, we explore unsupervised approaches towards
wrapper induction and propose a simple and efficient method
that works for Web scale IE. The method is based on sev-
eral hypotheses. First, it is possible to create large scale
dictionaries for different attributes of a vertical in an unsu-
pervised way and without the need for seed data. Second,
given a collection of detail pages from a single website, we ex-
pect two properties of these pages. On one hand, they share
structural similarity and therefore, the same attributes are
often mentioned at the same or similar positions. On the
other hand, we expect highly diverse attribute values and as
a result, for a certain attribute that is usually at a certain
position on each detail page, we expect to see diverse values
across the website.

To build a method based on these hypothesis, we propose
a Knowledge based approach where we (i) build pertinent
dictionaries to (ii) annotate Web pages from a website and
discover the structural patterns that encapsulate the target
information.

To accomplish the first task we exploit Linked Data as
background knowledge source to automatically generate dic-
tionaries for each attribute of each vertical. Linked Data
refers to a practice of describing and publishing structured
data in terms of triples using universal vocabularies such
that it become interlinked and more useful. The W3C Link-

ing Open Data Project 1 aims at publishing and interlinking
Linked Datasets on the Web according to Linked Data prin-
ciples. The scale of this Web of Data is constantly growing
and, as of 2011, comprised 27 billion triples in 203 data sets
[9] and research [10, 14] has shown Linked Data as a pow-
erful entity knowledge base that contain billions of entities
and descriptions of their attributes.

Once such knowledge has been collected from Linked Data,
for each attribute-website pair, we use the attribute dictio-
nary to annotate the detail pages from the website by simply
matching the candidate values against the text nodes on the
page. This process is fully unsupervised, and generates a
large number of annotations together with their correspond-
ing structural paths on the page, in the form of xpaths2.

The annotations are incomplete and imprecise, but are
useful to learn a high-accuracy wrapper in the next step.
To do so, we rank each xpath by the number of different
attribute values, and select the best xpaths, based on this
ranking, to be the wrappers for the attribute and the web-
site. The wrappers are applied to re-annotate the website
to create the final annotations. Compared to the state of
the art, our method is simple, generic and highly unsuper-
vised. This assures high portability and extensibility: intro-
ducing the method across websites, verticals and attributes
costs little human effort since no training data are required.
Evaluated using a standard large scale dataset for wrapper
induction [8], we show that the method achieves highly com-
petitive results on many tasks, with an average accuracy of
0.80% on covered tasks.

The contribution of this work is two-fold. First, we in-
troduce a simple, effective and highly flexible approach to
extracting structured data from Web pages. Second, we
investigate how Linked Data - an imprecise, redundant and
large-scale knowledge resource - can be used to support Web
scale IE in an effective and efficient way. Although Linked
Data has been exploited to bootstrap specific IE tasks, such
as relation extraction [21, 11], to the best of our knowledge
this is the first work to use Linked Data for the task of Wrap-
per Induction. We discuss lessons learnt regarding the noisy
nature of Linked Data and suggest future work in relevant
research.

The paper is structured as follows. After an analysis of the
related work (Section 2), we describe the proposed knowl-
edge based solution for Wrapper Induction in Section 3. We
test the method on a publicly available dataset (Section 4)
and report experiment results in Section 5. We discuss the
outcome of work in Section 6 and draw conclusions and fu-
ture directions in Section 7.

2. STATE OF THE ART
Using Wrapper Induction to extract information from struc-

tured Web pages has been studied extensively. Early studies
focused on the DOM-tree representation of Web pages and
learn a template that wrap data records in HTML tags, such
as [12, 15, 19].

As mentioned before, there are two major limitations of
such methods. First, they require manual annotation on ex-
ample pages to learn wrappers for those pages. This requires
considerable human effort since examples are required for ev-

1http://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData
2http://www.w3.org/TR/xpath/

ery attribute, vertical and website; while the learnt wrappers
may fail on unseen attributes or websites [20]. To alleviate
human effort, some unsupervised methods are proposed to
firstly cluster Web pages that share similar structures (e.g.,
[2]), and then deduce a shared template for each cluster
of Web pages. Two well-known studies in this stream is
RoadRunner [4] and EXALG [1]. However, such methods
do not recognise the semantics of the extracted data (i.e.,
attributes), but rely on human effort to identify attribute
values from the extracted content.

The second limitation is that such wrappers are often very
specific, and therefore are inflexible and not robust enough
to cope with variations in the structures of Web pages. It
is recognised that even a very slight change in the underly-
ing structure of Web pages can cause the wrappers to break
and have to be re-learnt. This is often referred to as the
“wrapper breakage” problem [5, 18]. As suggested in [7],
wrappers learnt without robustness considerations had an
average life of 2 months, with, on average, 1 out of every
50 wrappers breaking every day. Thus, research in recent
years has focused on developing robust wrapper induction
approaches to address this issue. Dalvi et al. [5, 6] define
a model to capture how Web pages evolve over time, and
use the model to evaluate the robustness of learnt wrappers.
A probabilistic tree-edit model is firstly trained using a col-
lection of evolutions of Web pages (e.g., the IMDB page for
the film The Godfather undergoes various changes across
its lifetime, resulting in different versions). The model en-
codes the probability of each editing operation on a Web
page over time, such as changing a tag to an <i> tag,
and inserting a new <div> and deleting a
. The model
also allows one to compute the probability of a Web page
evolving from one state to another, by aggregating the prob-
abilities of each edit operation. Next, candidate wrappers
in the form of XPaths are learnt using any state of the art
wrapper induction approaches. Finally, the “robustness” of
wrappers is evaluated using the learnt probabilistic model:
each wrapper can be considered as a “future” snapshot of a
Web page and its robustness can be formulated as the prob-
ability that the page transforms to this state. This model
is further extended in the work by Parameswaran et al.[18]
and Dalvi et al. [6]. A similar study on measuring robust-
ness of wrappers by cost of edit is introduced by Gulhane et
al. [7]. These methods however, require substantial data to
train the probabilistic model. The model is also specifically
fitted to the data and may not be ported to new domains.

Another stream of work addresses this issue by multi-view
learners [16, 8, 20]. Hao et al. [8] designed a set of weak
features that are general across attributes, verticals and web-
sites, to identify a large amount of candidate attribute values
that are likely to contain noise. Then, site-specific features
(strong features) are derived in an unsupervised manner and
exploited to boost the true values. While such methods have
been shown to improve robustness of wrappers as well as re-
duce the amount of manual annotations for training, they
still require seed Web pages to be annotated. Hao et al. [8]
for instance require at least one website to be annotated for
each vertical.

3. METHODOLOGY
Formally, we define the task as given a set of concepts of

interest C = {c1, . . . , ci} with their attributes {ai,1, . . . , ai,k},
and a website containing Web pages that describe entities

of each concept Wci , annotate the attributes of each entity
on the Web pages.

We divide our method into three steps. First (Section
3.1), for each attribute ai,k of each concept ci, we generate
a large dictionary di,k of known possible values for ai,k by
exploiting the knowledge in the Linked Data. Next, (Section
3.2) given Wj,i the set of Web pages from a particular web-
site j containing entities of the concept ci, each di,k is used
to annotate Wj,i by matching every entry in di,k against the
text content in the leaf nodes on a web page.

This process produces a set of annotations on each web
page. We define an annotation as a pair < xpath, valuei,k >,
where xpath is the DOM tree xpath to the labelled node on
the web page, and valuei,k is the text content of the node,
which matched an entry in the dictionary di,k. Due to the
structural consistency of Web pages on a website, we expect
to see the same or similar set of xpaths across all Web pages.

On the other hand, due to the diversity in attribute values,
we expect a good candidate xpath to extract different values
for each attribute across a website (high level of variance).
Therefore, in the final step (Section 3.3), for each attribute,
the different xpaths are gathered and their matched values
in the corresponding attribute dictionary are counted. The
confidence of each xpath is rated based on the number of
different values it extracts, and the best candidate xpaths
are selected to be the wrapper for that attribute on the
specific website, denoted as wpj,i,k. The wrapper is then
applied to re-annotate the website j for attribute ai,k.

3.1 Dictionary generation
As mentioned before, the Linked Data contains billions of

facts for specific domains, and can be used as a large entity
knowledge base in many tasks [10, 14]. In the first step, for
each attribute of each concept, we exploit Linked Data to
create a dictionary for that attribute and use it to annotate
Web pages. The goal is to create a sufficiently large gazetteer
that is a good representation of the task of interest.

The challenge at this step is to translate the concept (e.g.,
university) and attributes (e.g., name) of interest to the
vocabularies used within the Linked Data, such that the
corresponding knowledge can be identified. We define this
process as “user information need formalisation”. This pro-
cess is non-trivial because on one hand, it is known that
the vocabularies used on the Linked Data are highly het-
erogeneous [17]. For example, both http://dbpedia.org/

ontology/University and
http://schema.org/CollegeOrUniversity can be used to
represent the concept of “university”, however, they are not
necessarily mapped to each other by data publishers. As a
result, finding information within Linked Data by structured
queries requires users to not only be familiar with the under-
lying Linked Data vocabularies, but also the data structure
and query language in order to be able to translate the terms
and retrieve data. On the other hand, natural language is
highly ambiguous. Description of a concept at phrase-level
is sometimes insufficient to identify the correct concept. For
this reason, many natural language based approaches that
automatically translate such information needs into struc-
tured queries [13] can fail and incorrect data may be re-
trieved.

While this brings a new series of research questions, the
solution in this study is based on a simplified scenario. We
assume that users are familiar with the SPARQL language,

a universal structured query language to access Linked Data
on the Web. And we require users to manually explore the
vocabularies used in Linked Data and retrieve relevant data
using SPARQL queries. Whenever possible, we limit our
choices to two mainstream vocabularies: dbpedia.org and
schema.org. In future work, we shall research methods to
automate this process.

Thus under the simplified scenario, our goal can be achieved
in three steps. First, given a SPARQL endpoint, we query
the exposed Linked Data to identify the relevant concepts;
second, we manually select the most appropriate class and
properties that describe the attributes of interest; third, us-
ing the SPARQL endpoint we query the Linked Data to
retrieve instances of the properties of interest. For exam-
ple, the following query3 can find all concepts matching the
keyword “university”within the data:

SELECT DISTINCT ?uni

WHERE {

?uni rdf:type owl:Class ;

rdfs:label ?lab .

FILTER regex(?lab,"university","i") }

Table 1: Example concepts to describe “university”

http://dbpedia.org/ontology/University
http://data-gov.tw.rpi.edu/vocab/c/University
http://semanticweb.org/id/Category-3AUniversity

We manually check the results and select http://dbpedia.
org/ontology/University as the best candidate. Next, we
query Linked Data to identify all properties defined with this
concept using the query below, and manually select http:

//dbpedia.org/property/name to match the attribute ’uni-
versity name’.

SELECT DISTINCT ?prop

WHERE {

?uni a <http://dbpedia.org/ontology/University> ;

?prop ?o . }

}

Finally, we write a SPARQL query to extract all available
values of this attribute. Following this example, this would
be:

SELECT DISTINCT ?name

WHERE{

?uni a <http://dbpedia.org/ontology/University> ;

<http://dbpedia.org/property/name> ?name .

FILTER (langMatches(lang(?name), ’EN’)).

The query returns a list of distinct values of http://

dbpedia.org/property/name of all instances of http://dbpedia.
org/ontology/University. These are used as a dictionary
for university names in the following annotation process.
Note that the dictionary generation process is completely
independent from the data. No a priori knowledge about the
data is introduced to this process and thus the dictionary is
unbiased and universal for any extraction tasks concerning
the attribute “university name”.

3Other queries can also achieve the same objective. This is
just an example.

3.2 Web page annotation
The dictionaries thus created are used to annotate each

website in this step. To do so, each Web page is parsed into
a DOM tree and the leaf node that contains texts along with
its XPath are identified. Then to annotate for a particular
attribute ai,k, each candidate in di,k is matched against the
text content of each node. If there is an exact match be-
tween the text content and any candidate in the dictionary,
the XPath and the corresponding node are labelled by the
attribute and a pair < xpath, valuei,k > is created for this
website. This annotation process is completely unsupervised
and generic, since it does not require any a priori knowledge
about the data or task.

3.3 XPath identification and re-annotation
The annotation step produces a set of < xpath, valuei,k >

pairs for each website. There are two problems with these
annotations. First, due to the incompleteness of the auto-
generated dictionaries, the annotation process may not cover
the entire data set and the number of false negatives can be
large (i.e., low recall). However, we expect the large dictio-
naries to cover more than enough to learn useful wrappers
for the attributes. Second, entries in the dictionaries can be
ambiguous (e.g., ’Home’ is a book title that matches part of
navigation paths on many Web pages) but annotation does
not involve disambiguation.

Therefore in this step, we analyse the annotations and
identify best candidate xpaths as wrappers which will be
used to re-annotate the website. For a particular attribute
ai,n and a website collection, we gather all annotations (<
xpath, valuei,k >), find the distinct xpath of them, and cre-
ate a mapping between xpath and the set of distinct values
matched by that xpath across the entire website collection.
Thus an entry in the map is a pair < xpath, valuei,k|k = n >
where n denotes the attribute of interest is ai,n. Based on
the hypothesis of structural consistency in a website, we ex-
pect the majority of true positives to share the same or sim-
ilar xpath. Also, since an attribute is likely to have various
distinct values, the top ranked < xpath, valuei,k|k = n >
pairs by the size of valuei,k|k = n are likely to be useful
XPaths for extracting the attribute ai,n on this website col-
lection.

In this work, we simply select the highest ranked xpath
to be the wrapper for the attribute on the specific website.
Although research has shown that often Web pages from the
same website can have slight structural variations, causing
a single wrapper to fail at times, enhancing wrapper ro-
bustness is another challenging research question that often
requires complicated modelling and computation [5, 6, 8].
In this work, we do not aim to address this issue, but show
that for large scale extraction tasks, this simple approach
can achieve very competitive results on certain data.

Consequently the Web page annotation and XPath identi-
fication are repeated for every attribute on every website col-
lection, creating a wrapper for each attribute-website pair.
Finally, each wrapper is applied to re-annotate the website
for the corresponding attributes.

4. DATASET AND EVALUATION METHOD
The dataset we used for the experiments has been con-

structed and made publicly available by Hao et al. [8]. It
consists of around 124K pages collected from 80 websites.
These websites are related to 8 verticals, including Autos,

Books, Cameras, Jobs, Movies, NBA Players, Restaurants,
and Universities. For each vertical they collected detail
pages from 10 different websites (200 to 2,000 pages per
website). For each vertical they selected a set of 3 to 5 com-
mon attributes to extract. Table 2 shows the statistics of the
dataset, where WS shows the number of different websites,
WP shows the total number of web pages.

Table 2: Gold Standard dataset statistics

Vertical WS WP Attributes
Auto 10 17923 model (m), price (p), engine (e),

fuel economy (f)
Book 10 20000 title (t), author (a), ISBN-13 (i),

publisher (p), publish-date (pd)
Camera 10 5258 model (md), price (p), manufacturer (m)
Job 10 20000 title (t), company (c), location (l), date (d)
Movie 10 20000 title (t), director (d), genre (g), rating (r)
NBA player 10 4405 name (n), team (t), height (h), weight (w)
Restaurant 10 20000 name (n), address (a), phone (p), cuisine (c)
University 10 16705 name (n), phone (p), website (w), type (t)

A ground truth has been created by Hao et al.[8] for this
dataset. For each attribute-website pair, a file listing all
possible attribute values found on the website is generated.
The values are discovered by using a few handcrafted regular
expressions over each website. Note that for some verticals
(e.g., university), certain websites do not list all attributes
of the vertical (e.g., phone number is not listed on college-
toolkit.com. There are in total 5 such cases in the dataset.

Each attribute can have none or one to multiple correct
answers. In some cases, an attribute has mulitple answers
because of the different lexicalisation of the single value on
the web page (e.g., Volkswagen Group, Volkswagen Group
Plc.). In other cases, an attribute is a multi-valued attribute
and can have several possible answers (e.g., book authors).
In [8], for multiple answers, a prediction is counted correct
as long as at least one of the answers in the groundtruth
is extracted. In our experiment, we use the same strategy.
The same evaluation metric (F1) is also used.

5. EXPERIMENT AND RESULTS
In this section, we describe experiments designed to evalu-

ate the proposed method. As described before, our method
depends on the availability of a suitable dictionary for an
attribute of interest. Our first goal is to evaluate the per-
formance of the method under ideal conditions. To do so,
we create dictionaries specifically tailored to the data. These
dictionaries are expected to have the minimum level of noise,
and therefore, sets a higher limit of the performance of the
method. We call this experiment topline. Next, we follow
the method described in Section 3.1 to generate dictionaries
exploiting Linked Data, and re-apply the method to anno-
tate the data. We refer to this experiment as Linked Data
(ld) based WI and we use this result to compare against the
topline and state of the art. Since the dictionaries in the sec-
ond experiment are generated independently from the data,
they are likely to contain noise. Thus the second set of ex-
periments not only further evaluates the method of Wrapper
Induction, but also provides an indication of the robustness
of the method with respect to noise.

5.1 Generating dictionaries

To generate the topline dictionaries, for each attribute of
a vertical we simply collect all answers in the ground truth
to build a dictionary for that attribute. This makes sure
that when annotating each website all (but not only) the
true answers are contained in the dictionary. To generate
Linked Data based dictionaries, we follow the methodology
described in Section 3. That is, we manually explore Linked
Data and create queries to retrieve instances to populate
attribute dictionaries. We used Sindice SPARQL endpoint4

to retrieve information from the Linking Open Data cloud.
Table 3 shows the size of each dictionary obtained by the
two different methods. For some verticals and attributes we
were not able to generate a dictionary from the Linked Data
as we were not able to find a suitable concept on the Linking
Open Data cloud to represent the vertical. When comparing
the result we will only consider the attributes for which we
did generate a Linked Data based dictionary.

Table 3: Attribute dictionary statistics

Vertical Attribute topline linked data
University phone 16973 283

website 7968 12930
name 9224 13144
type 68

Camera model 5428
price 1524
manufacturer 253

Book isbn 13 19302 39112
author 14228 13060
title 17402 37485
publication date 6645 3048
publisher 6175 520

Movie genre 1398 114
title 17146 57292
mpaa rating 3255 2
director 7398 16079

Job title 17712
date posted 2381
location 5634
company 5655

Auto model 9916
price 10792
engine 2469
fuel economy 2051

Restaurant phone 19510
cuisine 2378 72
address 29687 37
name 16631 312

NBA player weight 507
height 121
name 1457 9194
team 60 677

5.2 Results
The two different sets of attribute dictionaries are then

used to induce wrappers for each attribute-website pair fol-
lowing the method described in Section 3. The induced
wrappers are then applied to re-annotate the website col-
lection for the attributes to create final annotations. We no-
ticed that, while in a majority of cases the induced wrappers
achieved very high accuracy, there are also a number of cases
where they failed (i.e., an incorrect wrapper is induced and
no or very few true positives are annotated). Further analy-
sis has shown that such failures are often related to the na-
ture of specific websites, which we generalise as situations in
which the proposed method are unsuitable. This will be fur-

4http://sparql.sindice.com/

ther discussed in the later sections. In presenting the results,
we only consider situations when true positives (at least one)
are extracted by the learnt wrappers. Thus in Figure 1, we
show the average accuracy for each vertical-attribute across
all websites for the topline. The x-axis shows the accuracy
(F1) and the y-axis shows the number of websites for which
an attribute can be extracted by the induced wrapper. For
brevity, we call this “coverage”. The lower case letters are
shorthands to represent the attributes of verticals (see Table
2 for keys). Take book for example, Figure 1 shows that the
wrappers for the title (t) attribute induced by our method
can extract true positives from all of the 10 websites, with
an average accuracy of approximately 98%. In the following,
we will say that our Wrapper Induction method can cover 10
websites for this attribute. As another example, for publica-
tion date (pd), the induced wrappers extracts true positives
on 9 websites (or covers 9 websites), with an average accu-
racy of 83%. Similarly, Figure 2 shows the same kind of
information but for the experiments using the Linked Data
generated dictionaries.

Figure 1: The F1 accuracy of topline for each at-
tribute of a vertical.

In Figure 3, we show the average accuracy for each vertical-
website combination, summing up all attributes of the ver-
tical. The number in brackets shows the number of websites
covered for the vertical and each point on the graph repre-
sents a website. The x-axis shows accuracy (F1) and the
y-axis shows the number of attributes of the vertical. As an
example, Figure 3 shows that for book, all of the 10 web-
sites can be covered by our method and for 9 of them, all
the 5 attributes can be extracted. The average accuracy for
all attributes ranges from 50% to 100%, with most websites
reaching very high accuracy of 90∼100% (as many points
clutter at the top right corner in the graph). Similarly, we

Figure 2: The F1 accuracy of ld-based WI for each
attribute of a vertical.

show the same kind of information for the experiments using
the Linked Data generated dictionaries in Figure 4.

Figure 3: The F1 accuracy of topline for each website
of a vertical

Finally, in Table 4, we compare both the results of topline
and the ld-based WI against [8]. It is known that [20] also
used the same dataset for performing experiments on Wrap-
per Induction. We do not report their figures in Table 4 be-
cause they are not directly comparable, as the authors use

Figure 4: The F1 accuracy of the ld-based WI for
each website of a vertical.

a only a derived version of the dataset, selecting samples of
pages from 4 of the 8 verticals.

Table 4: Comparison of F1 per vertical

Concept Hao[8] topline lod
auto 0.71 0.94
book 0.87 0.85 0.78

camera 0.91 0.76
job 0.85 0.82

movie 0.79 0.86 0.76
nbaplayer 0.82 0.9 0.87
restaurant 0.96 0.89 0.69
university 0.83 0.96 0.91

6. DISCUSSION

6.1 Interpretation of results
First, Figure 1 and Figure 3 give an indication of whether

our simple dictionary-based wrapper induction approach is
effective, under the condition that perfect dictionaries can be
obtained for the task of interest. As it is shown in Figure 1,
this simple approach is quite effective in most cases where
an accuracy of >80% can be achieved; indeed there are a
number of cases where it achieved 100% accuracy.

Figure 3 shows that, with perfect dictionaries, the perfor-
mance of the method varies across different websites. For
example, for university, there is one website on which only
two attributes can be extracted; for book, there are three
websites on which the accuracy is below 80% and varies sig-
nificantly.

Next, Figure 2 and Figure 4 show the results obtained with
dictionaries automatically generated using Linked Data. De-
spite the gigantic size of the Linking Open Data (LOD)
cloud, we show that in this particular experiment, there are
still domains that are not well represented as linked open
data. For example, we were not able to create dictionaries

for Camera and Auto, because 1) we could not find any au-
thoritative vocabularies within the LOD cloud to describe
them, and 2) the only available vocabularies do not have
instances defined on the Linked Data. Furthermore, ex-
isting knowledge on the LOD cloud can be highly noisy.
For example, the drop in accuracy in the attribute genre
for movie is largely because of the incorrect candidates re-
trieved from the Linked Data. The query for fetching in-
stances of http://dbpedia.org/property/genre that is a
property of http://dbpedia.org/ontology/film returned
114 instances where above 95% are “music” genres such as
“pop” and “rock”.

Additionally, by comparing the results against the topline,
we found that the quality of dictionaries indeed has an im-
pact on the wrapper induction process. Also the attributes
that suffer most seem to be those that are highly variant,
can contain infinite possible values, such as telephone num-
bers, addresses, prices and dates. Note that some of these
attributes are not shown on the figures since the wrapper in-
duction process failed to generate useful wrappers that can
extract true positives.

Nevertheless, by comparing figures in Table 4, we note
that our method can still be very competitive on data that it
is suitable for. We believe this is encouraging considering the
very simple and unsupervised nature of our approach. Thus
an important question is to answer under what situations
the method is most effective, which we discuss below.

6.2 Lessons learnt
Based on the above observations we conclude that the pro-

posed method can be highly successful under certain condi-
tions. The main condition for success is the regularity in
terms of structure of the website. In the considered dataset
this assumption is true on the majority of cases, obtain-
ing an overall accuracy of 87%. On web sites with a more
variable nature, i.e. where the same information is posi-
tioned in different places for different pages, the method is
not robust. This is a direct consequence of the naive way
of choosing the winning xpath, as the strategy we present
simply picks the first ranking xpath in term of dictionary
coverage. The Amazon website for example is one for which
the method has poor performance both on the Book domain
and the Camera domain. In a book page e.g. the target title
can be found in slightly different positions (/HTML[1]/BODY[1]
/DIV[7]/H1[1]/SPAN[1]/text()[1],

/HTML[1]/BODY[1]/DIV[8]/H1[1]/SPAN[1]/text()[1]...) and other book
titles other than the one of the target entity are located
in several areas of the page (/HTML[1]/BODY[1]/DIV[20]/DIV[1]
/FORM[1]/FIELDSET[1], /HTML[1]/BODY[1]/A[6]/text()[1],...). For these
cases finding a way to pick all the relevant xpaths would im-
prove the performance.

To prove this idea we tested additional strategies to chose
which xpath (or xpaths) is (are) the best for each website
to extract the information we are looking for. We tried (i)
partial matching of the xpath (i.e. relaxing position fillers
in the path), (ii) taking multiple xpath (up to covering a
certain percentage of annotations) and (iii) using multiple
xpaths, but only if similar to the single winning one, apart
from position fillers. The latter, when applied to extrac-
tion of book title from the Amazon website, produced an
accuracy of 95% (against 45% when applying the simple
strategy). We did not investigate this issue further as the
focus of the work is not finding ways of improving knowl-

edge based Wrapper Induction per se, but proving that in
the cases where it is likely to work, we can use Linked Data
generated resources. Therefore we went forward on the con-
struction of Linked Data based dictionaries. An obstacle we
encountered in this process was the difficulty of retrieving
concepts of interest, when not familiar with the vocabularies
on the Linked Data. For some of the concepts we could not
find a specific appropriate concept in the Linked Data to ex-
press the information need. These issues will be addressed
in future work with dedicated experiments on formulation
of SPARQL queries.

Once obtained the dictionaries (in Table 3), we reapplied
the method using those. For covered concept-attributes the
experiments has an accuracy comparable with the topline
experiment. The behaviour of the method using Linked
Data based dictionaries is consistent with the topline dic-
tionaries: poor performances appear to be related to the
website structure rather than the quality of the dictionary,
as the decrease of performances happens mostly for the same
websites in both experiments. The method is indeed robust
to poor quality of the dictionary. As an example, the dictio-
nary which we generate for the attribute genre of the con-
cept movie is rather semantically dubious. If querying for
the property http://dbpedia.org/property/genre of the
concept http://schema.org/Movie, returned values mostly
refer to the genre of the movie soundtrack than the genre
of the movie, which is a result of the triple extraction pro-
cess from Wikipedia to DBpedia [10]. We manually checked
the dictionary entries (114) for genre. 111 of them refers
to music genre (e.g. Indie pop, Country music, Drum and
bass, Groove metal, Indie rock ...), while only 3 of them
refer to actual movie genre (Philosophical fiction, Thriller,
Western). Nevertheless, the performance of the method for
this attribute are perfectly comparable with topline. The
failure (average accuracy per attribute of 6%) for allmovie
website also happens with the topline experiment (average
accuracy per attribute of 36%), so it is likely to be related
to the website structure.

With respect with the state of the art the overall accuracy
of the the method proposed by [8] is 84% (calculated by
macro-averaging the figures reported on the paper), while
our method obtains an accuracy of 80% on covered concepts
and attributes. The result is encouraging considering that
our method is (i) very simple, do not require any kind of
pre-processing of the web pages or collection of additional
features (ii) fully unsupervised.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a knowledge based method for

Wrapper Induction. The simple idea behind the method is to
(i) generate knowledge resources, in the form of dictionaries,
for each type of information to extract and (ii) use the dic-
tionaries to annotate websites and discover if any recurrent
pattern exists to locate the information on the website.

The major contribution of this work is a study on the suit-
ability of Linked Data to build each specific dictionary for
Wrapper Induction, and experiments on a publicly available
dataset show encouraging results for covered cases, with an
average accuracy of over 80%, although some failure cases
occur. The main advantage of the method is that it does not
require any training material for Wrapper Induction. A dic-
tionary is built once for each type of information to extract
and it is reusable across all websites of a pertinent domain.

The implication is that adapting the method across domains
and websites will require little human effort.

One limitation of the approach in the dictionary gener-
ation phase is represented by cases where the concept and
knowledge instances are not present or not easy to locate in
the Linked Data. To address this, we will look into the re-
search of information retrieval on the semantic web to iden-
tify possible solutions. Also, we aim to study methods that
can assist human users to define their information needs
and retrieve relevant knowledge in Linked Data in a semi-
automatic way.

Another limitation is the lack of robustness in the learnt
wrappers. Experiments have shown that two major failure
situations are due to (i) the irregular structure of the website
or (ii) the quality of the dictionary. To address (i), future
work will focus on defining a strategy to decide when to use
a single xpath, multiple xpaths, or partial matching of the
xpath depending on certain prior knowledge about the verti-
cal and attribute (e.g., whether the attribute is single-valued
or multi-valued). Furthermore, we aim to find solutions that
can derive such knowledge in a (semi)automatic way. The
problem regarding the quality dictionaries will require more
investigation. As a first step, we aim to propose measures
to assess whether a dictionary is sufficiently large for a task.

Acknowledgments
Part of this research has been sponsored by the EPSRC
funded project LODIE: Linked Open Data for Information
Extraction, EP/J019488/1

8. REFERENCES
[1] A. Arasu and H. Garcia-Molina. Extracting structured

data from web pages. In Proceedings of the 2003 ACM
SIGMOD international conference on Management of
data, pages 337–348. ACM, 2003.

[2] R. Blanco, H. Halpin, D. Herzig, and P. Mika. Entity
search evaluation over structured web data. In SIGIR
2011, 2011.

[3] A. Carlson and C. Schafer. Bootstrapping information
extraction from semi-structured web pages. e European
Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, 2008.

[4] V. Crescenzi and G. Mecca. Automatic information
extraction from large websites. Journal of the ACM,
51(5):731–779, Sept. 2004.

[5] N. Dalvi, P. Bohannon, and F. Sha. Robust web
extraction: an approach based on a probabilistic
tree-edit model. Proceedings of the 35th SIGMOD
international conference on Management of data, 2009.

[6] N. Dalvi, R. Kumar, and M. Soliman. Automatic
wrappers for large scale web extraction. Proceedings of
the VLDB Endowment, 4(4):219–230, 2011.

[7] P. Gulhane, A. Madaan, R. Mehta, J. Ramamirtham,
R. Rastogi, S. Satpal, S. H. Sengamedu, A. Tengli,
and C. Tiwari. Web-scale information extraction with
vertex. 2011 IEEE 27th International Conference on
Data Engineering, pages 1209–1220, Apr. 2011.

[8] Q. Hao, R. Cai, Y. Pang, and L. Zhang. From One
Tree to a Forest : a Unified Solution for Structured
Web Data Extraction. In SIGIR 2011, pages 775–784,
2011.

[9] T. Heath and C. Bizer. Linked data: Evolving the web
into a global data space. Synthesis Lectures on the
Semantic Web: Theory and Technology, 1(1):1–136,
2011.

[10] G. Kobilarov, C. Bizer, S. Auer, and J. Lehmann.
DBpedia-A Linked Data Hub and Data Source for
Web and Enterprise Applications. In WWW2009,
pages 1–3, 2009.

[11] S. Krause, H. Li, H. Uszkoreit, and F. Xu. Large-scale
learning of relation-extraction rules with distant
supervision from the web. In Proceedings of the 11th
international conference on The Semantic Web -
Volume Part I, ISWC’12, pages 263–278, Berlin,
Heidelberg, 2012. Springer-Verlag.

[12] N. Kushmerick. Wrapper Induction for information
Extraction. In IJCAI97, pages 729–735, 1997.

[13] V. Lopez, M. Fernández, E. Motta, and N. Stieler.
Poweraqua: Supporting users in querying and
exploring the semantic web. Semantic Web,
3(3):249–265, 2012.

[14] V. Mulwad, T. Finin, Z. Syed, and A. Joshi. Using
linked data to interpret tables. In O. Hartig, A. Harth,
and J. Sequeda, editors, COLD, volume 665 of CEUR
Workshop Proceedings. CEUR-WS.org, 2010.

[15] I. Muslea, S. Minton, and C. Knoblock. Hierarchical
wrapper induction for semistructured information
sources. Autonomous Agents and Multi-Agent
Systems, pages 1–28, 2001.

[16] I. Muslea, S. Minton, and C. Knoblock. Active
Learning with Strong and Weak Views : A Case Study
on Wrapper Induction. IJCAI’03 8th international
joint conference on Artificial intelligence, pages
415–420, 2003.

[17] A. Nikolov, V. Uren, E. Motta, and A. Roeck.
Overcoming schema heterogeneity between linked
semantic repositories to improve coreference
resolution. In Proceedings of the 4th Asian Conference
on The Semantic Web, ASWC ’09, pages 332–346,
Berlin, Heidelberg, 2009. Springer-Verlag.

[18] A. Parameswaran, N. Dalvi, H. Garcia-Molina, and
R. Rastogi. Optimal Schemes for Robust Web
Extraction. In 37th International Conference onVery
Large Data Bases, 2011.

[19] S. Soderland. Learning information extraction rules
for semi-structured and free text. Mach. Learn.,
34(1-3):233–272, Feb. 1999.

[20] D. Song, Y. Wu, L. Liao, L. Li, and F. Sun. A
dynamic learning framework to thoroughly extract
structured data from web pages without human
efforts. Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics - MDS ’12, l:1–8, 2012.

[21] C. Welty, J. Fan, D. Gondek, and A. Schlaikjer. Large
scale relation detection. In Proceedings of the NAACL
HLT 2010 First International Workshop on
Formalisms and Methodology for Learning by Reading,
FAM-LbR ’10, pages 24–33, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

[22] T. Wong and W. Lam. Learning to adapt web
information extraction knowledge and discovering new
attributes via a Bayesian approach. Knowledge and
Data Engineering, IEEE, 22(4):523–536, 2010.

