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Usage of Large Language Models
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Filippo Chiarello, Vito Giordano, Irene Spada, Simone Barandoni, Gualtiero Fantoni. Future applications of generative large language models: A data-driven case study on ChatGPT.
Technovation Volume 133, May 2024, 103002.
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LLM Usage Types
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Usage of Large Language Models
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Usage of Large Language Models
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Factuality Challenges of Large Language Models
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Augenstein et al. (2024). Factuality Challenges in the Era of Large Language Models. Nature Machine Intelligence, August 2024.
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Augmentation of LLMs with External Knowledge

Input Indexing
=
-------- —
p =)
How do you evaluate the fact ' Documents —
that OpenAl's CEO, Sam Altman, ! Chunksv_ec,tors
went through a sudden dismissal |
by the board in just three days, .
and then was rehired by the i l embeddings l
company, resembling a real-life i
version of "Game of Thrones" in i .
terms of power dynamics? E Ret"eval

[ Relevant Documents J

...l am unable to provide comments on

future events. Currently, | do not have
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and rehiring of OpenAl's CEO ... paan I.'.L.M ____________________ 3 R e S SO e -
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OpenAl as CEQ, Silicon Valley Drama
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based on the following information : Chunk 2: "The Drama Concludes? Sam

strategic decisions. All of these twists gE:;t 12 Altman to Return as CEO qf QpenAI,
and turns reflect power struggles and ehinlia s Board to Undergo Restructuring

corporate governance issues within
OpenAl...

Chunk 3: "The Personnel Turmoil at
1 OpenAl Comes to an End: Who Won
1 and Who Lost?"
'

Combine Context
and Prompts

Gao et al. (2023). Retrieval-Augmented Generation for Large Language Models: A Survey. arxiv:2312.10997.
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Augmentation of LLMs with External Knowledge

Input Indexing
(——)
________ Query |______. =
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How do you evaluate the fact [ Documents

that OpenAl's CEO, Sam Altman,
went through a sudden dismissal
by the board in just three days,
and then was rehired by the
company, resembling a real-life
version of "Game of Thrones" in
terms of power dynamics?
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[ Relevant Documents ]

o
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1 ! future events. Currently, | do not have | |
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Combine Context
and Prompts

» Retrieving contextual knowledge to augment LLM’s parametric knowledge

» Can better take context-dependent nature of queries into account

» Interplay between contextual and parametric knowledge underexplored

» When should contextual knowledge overwrite or augment parametric knowledge?
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Overview: Understanding LLMs’ Knowledge Utilisation

e Parametric vs Contextual Knowledge Utilisation of Language Models
o Revealing conflicts between parametric and contextual knowledge
o Determining when or how RAG uses contextual knowledge
o Context manipulation techniques

e Conclusion
o  Wrap-up and outlook
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Fact Dynamicity and Knowledge Conflicts

Sizlile | Q: Who is the Father of George W. Bush? = A: George H. W. Bush

In AD 117 )
A: Roman Empire

Q: What is Rome the capital of? Q

A: ltaly
In 2024
; : ; A: European
Q: Which ethnic group is most commonly oy
affected by lactose intolerance?
- A: Asian

+ Knowledge Conflict

- |InieEEnElnlelgXee il : Conflict caused by contradicting representations of the fact within the
training data, can cause uncertainty and instability of an LM

o [ofelgl Y EnETlelg Ao lnlil[el : Conflict caused by the context contradicts to the parametric
knowledge

We investigate the impact of fact dynamicity on LLM output in question answering

Sara Vera Marjanovi¢*, Haeun Yu*, Pepa Atanasova, Maria Maistro, Christina Lioma, Isabelle Augenstein. DYNAMICQA: Tracing Internal Knowledge Conflicts in
Language Models. In Findings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024), November 2024.
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DynamicQA

We release a dataset of 11,378 questions and answers.

e We identify relations as relations with >1 edit on Wikidata
e We identify relations as relations with no edits on Wikidata
e We identify relations as sentences with >1 mutual reversions

on Wikipedia (Controversial topics)

For each relation, we use the edited object as the answer and formulate a
question.

We retrieve relevant context mentioning the subject and object from
Wikipedia.
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Intra-Memory Conflict in Output Distribution

(@) Unpopular Static questions (b) Popular

l/In what city was Gosta Eriksson born? l I Who is the father of Queen Elizabeth II? ]l

A\

8 Alexander
.. Strémsund é « Caimbridge George VI é
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Intra-Memory Conflict in Output Distribution

(a) Unpopular Static questions (b) Popular Disputable (C) Dynamic questions _

What ethnic group is most commonl f i
! In what city was Gésta Eriksson born? Who is the father of Queen Elizabeth II? ] Ll Iagctospe PYale areas Y I What is Rome the capital of? ]

J
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Intra-Memory Conflict in Output Distribution

i i Disputable (c) Dynamic questions _
(a) Unpopular Static questlons (b) Popular o)
L/In what city was Gosta Eriksson born? Who is the father of Queen Elizabeth II? ] g‘g‘eacttgghg;cl grodp, ';pgfgggggmm'y | What is Rome the capital of? ]

J

= Alexander Italy The
» SEROmSGd “* Caimbridge George bl é RHFSREARS ‘ é é

Empire

Dynamic facts should show greater entropy across objects.

We evaluate this using Semantic Entropy (Kuhn et al, 2023)
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Intra-Memory Conflict in Output Distribution

i i Disputable (c) Dynamic questions _
(a) Unpopular Static questlons (b) Popular o)
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Dynamic facts should show greater entropy across objects.

We evaluate this using Semantic Entropy (Kuhn et al, 2023)
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Intra-Memory Conflict in Output Distribution

i i Disputable (c) Dynamic questions _
(a) Unpopular Static questlons (b) Popular o)
L/In what city was Gésta Eriksson born? Who is the father of Queen Elizabeth II? ] !ﬁ‘eacttgéhé‘ﬁ Jronp 'If,‘{‘gfggﬁgg?,m°“'y I What is Rome the capital of? ]
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Dynamic facts should show greater entropy across objects.

We evaluate this using Semantic Entropy (Kuhn et al, 2023)
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However, this is not always the case

Semantic Entropy
20

15

10

Llama-2 Mistral Qwen2

Static B Temporal [ Disputable
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Context-Memory Conflict

i i Disputable (c) Dynamic questions _
(a) Unpopular Static questlons (b) Popular o)
L/In what city was Gésta Eriksson born? Who is the father of Queen Elizabeth II? What ethnic group is most commonly I What is Rome the capital of? ]

affected by lactose intolerance?

J AL

& Alexander Italy The
Stromsund “ Caimbridge George VI é Europeans ‘ é Roman é

Empire

If we provide context...
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Context-Memory Conflict

Disputable (c) Dynamic questions _

(a) Unpopular
i & : What ethnic group is most commonl f i
l/ln what city was Gésta Eriksson born? Who is the father of Queen Elizabeth II? Sffected Dy Iagctospe Paerarees Y I What is Rome the capital of? ]

A AA

Static questions (b) Popular
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Empire

If we provide context...

. ; i ... Elizabeth II, born to King Alexander ... Lactose intolerance is most common ' ]

- Eriksson, born in Stromsund ... Caimbridge ... d in people of European descent.. .- Rome became Italy's capital in 1871...
What is Rome the capital of?

Who is the father of Queen Elizabeth II? Xvé'eaégéh&ﬂagcr?#s% Iﬁ\?&%ﬁ%ﬁg?’momy

In what city was Gosta Eriksson born?

Alexander ... Asi
(S veshom o ~ (Cambidge | Seorsevt gy s oy ST T
Empire




Coherent Persuasion Score
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Persuasion Score across Partitions

We see the greatest persuasion score for the

Coherent Persuasion score

Llama-2 Mistral Qwen2

Static [ Temporal [ Disputable



o? UNIVERSITY OF COPENHAGEN

Persuasion Score across Partitions

We see the greatest persuasion score for the static dataset.

However, this is successful persuasion, in that the model output distribution
has been changed.

How far are we from from successful persuasion for dynamic facts?

— Loss (target answer | question) ( ~ Perplexity )
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Loss across Partitions

25 - 8

20 A

Losses

| B :

o- e

Static Temboral Dispﬁtable

Loss reflects the likelihood of an output
given the model’s trained parameters.

A higher loss indicates greater change
required to steer the LM to output the target
answer.

It requires more change in the model’s
parameters to obtain the desired answer for
temporal and facts (p<<<107°).

This cannot be accomplished by context
alone.
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What impacts Persuasion? Predictors of Persuasion

Logistic regression model to predict if an instance will be stubborn or persuaded
Llama-2 [ Mistral B Qwen2

0.10
0.05 .I
0.00 — — 1 lr .l
-0.05 II Ir
——
-0.10
Number edits  Object Popularity Subject Semantic Semantic

Popularity Entropy w/ Entropy w/o
context context

Number of edits is the strongest,

most consistent negative indicator of model persuasion across models
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Implications: Knowledge Conflict and Fact Dynamicity

 Temporal and disputable facts, which have greater historical variability (which is expected to

be reflected in a training dataset, leading to intra-memory conflict):
« Show lower persuasion scores, fewer persuaded instances, more stubborn instances
» Are less likely to be updated with context, instead requiring models to be retrained or
manually edited to reflect changing information.
« Fact dynamicity (number of edits) has a greater impact on a model's likelihood for
persuasion than a fact's popularity
» Fact popularity often used to guide RAG in previous literature

» Other approaches might be required for retrieval augmentation in low-certainty domains

Sara Vera Marjanovi¢*, Haeun Yu*, Pepa Atanasova, Maria Maistro, Christina Lioma, Isabelle Augenstein. DYNAMICQA: Tracing Internal Knowledge Conflicts in
Language Models. In Findings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024), November 2024.
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Overview: Understanding LLMs’ Knowledge Utilisation

e Introduction
o Factuality Challenges of Large Language Models

e Parametric vs Contextual Knowledge Utilisation of Language Models
o Revealing conflicts between parametric and contextual knowledge
o Determining when or how RAG uses contextual knowledge
o Context manipulation techniques

e Conclusion
o Wrap-up and outlook
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Context Utilisation of Retrieval-Augmented Generation

» Successful RAG requires

Document its

Indexing

(=
| e—
—
—
—
——

* Retrieval of relevant information
« Successful use of retrieved information by LLM

ChunksVectors
embeddings
Retrieval

« Prior work studies these aspects in isolation il

» Little understood about characteristics of
retrieved content; and impact on LLM usage

« Context usage studies use synthetic data
* Do not reflect real-world RAG scenarios

nswer the above questions
n the following information :

Contributions:
- new dataset to measure realistic context usage (DRUID)

- novel context usage measure (ACU)

- insights into LLMs’ context usage characteristics

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle

Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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The capital of
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Stockholm.4 g
Context #2
The capital of
Japan is
definitely
Stockholm.,é i

George CES 2019: FULL CLAIM:
Rankin Scientists have [ Blood pressure
graduated developed a tracking apps
from Harvard blood pressure | can replace a @
Law School monitoring app | cutt |...| Despite
in 2005 and to replace the the way it was
has been 100-vear-old4\ [ shown in the
practicing law cuff. [...] The promotional
for the past Biospectal app, | Facebook post,
15 vears...n e still in testing, there is no
could indication that

: essentially the app is able
What is replace the to to measure
George traditional blood || blood pressure.
Rankinls_' pressure cuff. A\ J Instead, the app
occupation? simply allows

Controlled
S Al Is it true that el o ol
and track their

ealwr' (DIGOHIPISSSUIEN | 1ings taken
ie et al. (2024) tracking apps from a?]othel’

isti can replace a ;
Context characteristics e p device, such as

Controlled a blood
Realistic
- pressure cuff.

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.

Q: What is

the capital of

Japan?
Controlled

Realistic x
Real-world )}

Yu et al. (2023)
Du et al. (2024)

7 knowledge conflict . unreliable
% assertive ? hedging
@ generated & insufficient
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DRUID data selection process

« Crawl 7 geographically diverse English language
fact checking datasets for claims

* Collapse labels

« Retrieve relevant evidence pages
« 20 from Google Search, 20 from Bing Search

» De-duplicate results

Our label

Incoming label

Source #iclaims #samples IAA
checkyourfact 220 890 0.77
science.feedback 220 913 0.64
factcheckni.org 109 429 0.50
factly 180 739  0.80
politifact 220 931 0.74
srilanka.factcrescendo 156 598 0.75
borderlines 224 990 0.53
Total 1,329 5,490 0.71

True

Half-true

False

True

TRUE

ACCURATE

ACCURATE WITH CONSIDERA-
TION

Correct

Mostly accurate

Accurate

Half True

PARTLY TRUE

Correct But...
Mostly_Accurate

Partially correct

False

FALSE

MISLEADING

Misleading

Inaccurate

Incorrect, Flawed_Reasoning
INACCURATE
INACCURATE WITH CONSIDERA-
TION

Lovisa Hagstrém, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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DRUID content characteristics

Context-memory conflicts less prevalent in real-world scenarios

Measured as share of samples for which the stance of the provided evidence conflicts
with the parametric model prediction (no context or evidence provided)

For Llama 3.1 8B, e.g.:

« CounterFact: 97.41% of supporting evidence
« ConflictQA: 71.16% of refuting evidence

« DRUID: 58.09% of supporting evidence

Overall, rates of memory conflicts sizably lower for DRUID than for synthetic datasets

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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DRUID content characteristics ctd

Claim-evidence similarity Difficult to understand

KE B #—x¢ 2 = * -—L
| | | | | | | I I I I I
0.25 0.50 0.75 0.6 0.7 0.8 0.9 60 80 250 500 750
Jaccard similarity Claim-evidence overlap Claim length Evidence length
Refers external source
. ols X. B 03 il
\ * \ \ . ! \ X ‘I' 1 1 1 1 } 1 1 1
0 50 100 150 55.0 57.5 60.0
0 20 40 0 20 40 ) : )
Repeats claim (%) Detection by LLM (%) Llama: Perplexity Flesch reading ease score
Uncertain Implicit Unreliable
L % w B ¥H— .
! ! ! ' y . | * 1 xI l ! 1 * I
0 .20 o 20 ~ 40 05 06 0.7 0 2 4
Contains hedging (%) Contains hedging disc. (%) Claim entity overlap Unreliable source (%)
W  CounterFact X ConflictQA # DRUID DRUID+

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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Context utilisation of RAG

model
0.84 MW Llama
B Pythia

« Context usage (ACU score):

+ Re-scaled difference in salient token 0.6 -
probability for different labels for a claim
between settings with vs. without evidence |

« Synthetic datasets: o e |
» Over-prefer supporting evidence 021 e
» Context repulsion for refuting evidence 0.0 |
« Generated automatically -> aligned with
parametric memory -0.2 -
* Real-world dataset: | 5
« Context utlisation and repulsion both lower T ertes supports refutes supports refutes supports

CounterFact ConflictQA DRUID

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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Influence of content characteristics on RAG

« Context from fact-check sources -> high ACU
» Higher rate of assertive and to-the-point language
« More direct discussion of claims with multiple arguments -> more convincing to LM
« Similarly for ‘Pub. after claim’ and ‘Gold source’

Fact-check source - 0.2
Gold source - 0.2

Pub. after claim - 0.1
Fact-check verdict - -0.1 0.3

refutes supports refutes supports refutes supports

CounterFact ConflictQA DRUID
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Influence of content characteristics on RAG

- References to external sources: low correlations with ACU

« Confirms findings of previous work, showing LLM are insensitive to references to
external sources

Refers external source

Detection by LLM - -0.1 0.2 -0.0 0.2
refutes supports refutes supports refutes supports
CounterFact  ConflictQA DRUID

Lovisa Hagstrém, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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Influence of content characteristics on RAG

» Correlations with claim-evidence similarity properties low for DRUID

« LLMs prioritise contexts with high query-context similarity -> more difficult in real-
world RAG setting

Claim-evidence similarity

Jaccard similarity - =0.3 0.1
Claim-evidence overlap - 0.0 0.2 m 0.2 -0.1
refutes supports refutes supports refutes supports
CounterFact  ConflictQA DRUID

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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Influence of content characteristics on RAG

» LLMs less faithful to long contexts

Claim length - -0.0 0.1 -0.0 0.0

Evidence length- -0.0 0.1 m -0.1 m -0.2

refutes supports refutes supports refutes supports

CounterFact ConflictQA DRUID

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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Take-Aways: Context Utilisation of RAG

Characteristics of context usage:

« Synthetic datasets oversell the impact of
certain context characteristics (e.g. knowledge
conflicts), which are rare in retrieved data

» Synthetic data exaggerates ‘context repulsion’
-> rarer for realistic data

* No singleton context characteristic indicating
RAG failure in real-world settings

Overall:

« Reality check on LLM context usage

* Need for real-world aligned studies to
understand and improve context use for RAG

CounterFact
Context #1
The capital of

Japan is
Stockholm. , 4
Context #2
The capital of
Japan is
definitely
Stockholm.

Q: What is

the capital of

Japan?
Controlled
Realistic
Real-world

Yu et al. (2023)

Context characteristics

Du et al. (2024)

ConflictQA
Context
George
Rankin
graduated
from Harvard
Law School

in 2005 and
has been
practicing law
for the past
15 years..., .

What is
George
Rankin's
occupation?
Controlled
Realistic
Real-world
Xie et al. (2024)

Our work

(&DRUID

Context #1
CES 2019:
Scientists have
developed a
blood pressure
monitoring app
to replace the
100-year-old 4
cuff. [...] The
Biospectal app,
still in testing,
could
essentially
replace the
traditional blood

pressure cuff. A

? hedging

knowledge conflict 1. unreliable
% assertive

@ generated

9 insufficient

Context #2

\

FULL CLAIM:
Blood pressure
tracking apps
can replace a @
cuff [...] Despite
the way it was
shown in the
promotional
Facebook post,
there is no
indication that
the app is able
to to measure
blood pressure.
Instead, the app
simply allows
users to store
and track their
readings taken
from another
device, such as
a blood
pressure cuff.

Lovisa Hagstrom, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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Multi-Step Knowledge Interaction Analysis rank(P) = 1
No separation of knowledge usage
» Prior papers on knowledge interaction: 020
. . . ‘?0.15-
« Study single-step generation (final answer) % oo
* Model interaction as binary choice between fiR
parametric and contextual knowledge 0.00 - : ,
> Ignore richer forms of interaction, e.g. Subspace component
complementary or supporting knowledge WEITL 0 Supportve, f g
g 0.8 :; »{x Xi« ; x Complemeyé%,%{‘-fy
. . S |'¢ ﬂ'cin - 5o
Contributions: g | o *‘aﬁ
8
g 0.4
- novel knowledge interaction analysis via rank-2 subspace S
projection 502 Conflicting
. . . . %)
- application to interaction of long natural language e S L. it )
explanation sequences Subspace component (PK)

Clear Separation of Knowledge Usage
rank(P) = 2

- novel insights into LLMs’ knowledge interaction dynamics

Sekh Mainul Islam, Pepa Atanasova, Isabelle Augenstein. Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace
Disentanglement. CoRR, abs/2511.01706, November 2025.
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Multi-Step Knowledge Interaction Analysis

Z-man was born on Earth.

Earth is spherical in shape

Parametric Knowledge @~ AV ° T .
Llama-3.1-8B-Instruct: Linear decomposition

Response:

Earth is known to be a planet, and planets are
generally spherical in shape due to their own gravity pulling them into a rounded form. This is a
fundamental concept in astronomy and planetary science.

Sekh Mainul Islam, Pepa Atanasova, Isabelle Augenstein. Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace
Disentanglement. CoRR, abs/2511.01706, November 2025.
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RQ2: How Do Individual PK and CK Contributions Change Over the NLE

Generation for Different Knowledge Interactions?

StrategyQA OpenBookQA
5000
= 1<
3 1000 >
S S 2500
0 T = 0 r -.— ;
. e \ () S A g “‘_ .Se
Ve . S a2ttt o\s AWNE L a2ttt o
oup®° contW mp\eﬁ‘e\((\(g\%h e oup®° contV mp\eme\((\(g\% o
cO O
BaseFakepedia MultiHopFakepedia
4000
5 5 2000
8 2000 S
0 T T T 0 T T
. g \ R c e e g “‘_ .Se
Ve . xS a0l NE o a2 oV
upP® confW mp\e‘“e\(r\(é\g' e u?® contt mp\e(“"'\?‘g\%h A
o O

B Llama-3.1-8B . Gemma-2 9B B Mistral-v0.3 7B

Fakepedia datasets
contain more conflicting
examples than other
knowledge interaction
types

Consistent with dataset
designs: Fakepedia
variants are evidence-
centric and often
adversarial/conflicting

Sekh Mainul Islam, Pepa Atanasova, Isabelle Augenstein. Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace

Disentanglement. CoRR, abs/2511.01706, November 2025.
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RQ2: How Do Individual PK and CK Contributions Change Over the NLE
Generation for Different Knowledge Interactions?
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Higher CK contribution for
Fakepedia datasets —
adversarial/conflicting
evidence pushes model to
prefer context

Higher PK for QA datasets:
commonsense questions
and sparse cues
encourage parametric
recall

Sekh Mainul Islam, Pepa Atanasova, Isabelle Augenstein. Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace

Disentanglement. CoRR, abs/2511.01706, November 2025.
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RQ3: Can We Find Reasons for Hallucinations Based on PK-CK

Interactions?
RAGTruth
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Sequence step
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Sequence step

Mean length (Hallucinated)
Mode length (Hallucinated)

Mean length (Non-Hallucinated)
Mode length (Non-Hallucinated)

- Gap between PK and CK
much higher for
hallucinated than for non-
hallucinated instances

- Hallucinated answers
based more on PK than
CK; already visible during
early sequence steps

» Aligns with similar
observations of prior work

Sekh Mainul Islam, Pepa Atanasova, Isabelle Augenstein. Multi-Step Knowledge Interaction Analysis via Rank-2 Subspace
Disentanglement. CoRR, abs/2511.01706, November 2025.
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Overview: Understanding LLMs’ Knowledge Utilisation

e Introduction
o Factuality Challenges of Large Language Models

e Parametric vs Contextual Knowledge Utilisation of Language Models
o Revealing conflicts between parametric and contextual knowledge
o Determining when or how RAG uses contextual knowledge
o Context manipulation techniques

e Conclusion
o Wrap-up and outlook
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Benchmarking context usage manipulation techniques

e Previous context usage experiments show that LLMs:
o Struggle with more complex and long contexts

o Can easily be distracted by irrelevant contexts due to context-
memory conflicts

e Methods to increase or suppress LLMs’ context usage have been
developed to:

o Improve robustness to irrelevant contexts
o Enhance faithfulness to conflicting information

e Do they work for real-world RAG settings?

Lovisa Hagstrém®, Youna Kim*, Haeun Yu, Sang-goo Lee, Richard Johansson, Hyunsoo Cho, Isabelle Augenstein. CUB:
Benchmarking Context Utilisation Technigues for Language Models. CoRR, abs/2505.16518, May 2025.
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Benchmarking context usage manipulation techniques
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Lovisa Hagstrom*, Youna Kim*, Haeun Yu, Sang-goo Lee, Richard Johansson, Hyunsoo Cho, Isabelle Augenstein. CUB:
Benchmarking Context Utilisation Techniques for Language Models. CoRR, abs/2505.16518, May 2025.

Context Utilisation Benchmark
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Overview of context usage manipulation techniques

Tuning Inference
Methods | Objective Level Cost Cost
Fine-tuning Both Fine-tuning  High Low
Prompting Both Prompt. Low Mid
Both Prompt. None High
PH3 +context Faith Mech. High Low

60)12761D Faith Decoding Mid Mid
PH3 +memory | Robust Mech. High Low
Robust Decoding None Mid

Lovisa Hagstrém®, Youna Kim*, Haeun Yu, Sang-goo Lee, Richard Johansson, Hyunsoo Cho, Isabelle Augenstein. CUB:
Benchmarking Context Utilisation Technigues for Language Models. CoRR, abs/2505.16518, May 2025.
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Are larger models better at utilising context?
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Binary context utilisation (BCU) score:

- For relevant contexts (gold and conflicting)
the score is 1 if the LM prediction is the same as
the token promoted by the context,

and 0 otherwise

- For irrelevant contexts the score is 1 if the LM
prediction is the same as the memory token
(i.e. the prediction made by the model before
any context has been introduced),

and 0 otherwise

Lovisa Hagstrém®, Youna Kim*, Haeun Yu, Sang-goo Lee, Richard Johansson, Hyunsoo Cho, Isabelle Augenstein. CUB:
Benchmarking Context Utilisation Technigues for Language Models. CoRR, abs/2505.16518, May 2025.
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Which context manipulation technique is best on average?
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Lovisa Hagstrém®, Youna Kim*, Haeun Yu, Sang-goo Lee, Richard Johansson, Hyunsoo Cho, Isabelle Augenstein. CUB:
Benchmarking Context Utilisation Technigues for Language Models. CoRR, abs/2505.16518, May 2025.
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Take-aways: Benchmarking context usage manipulation techniques

e Larger models are on average better than smaller models — but with the
right CMT, smaller models can outperform larger ones

e There is no one best context manipulation technique — some perform
better for conflicting, other for irrelevant contexts

e Difference in patterns between artificial and realistic datasets

Lovisa Hagstrém®, Youna Kim*, Haeun Yu, Sang-goo Lee, Richard Johansson, Hyunsoo Cho, Isabelle Augenstein. CUB:
Benchmarking Context Utilisation Technigues for Language Models. CoRR, abs/2505.16518, May 2025.
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Overview: Understanding LLMs’ Knowledge Utilisation

e Introduction
o Factuality Challenges of Large Language Models

e Parametric vs Contextual Knowledge Utilisation of Language Models
o Revealing conflicts between parametric and contextual knowledge
o Determining when or how RAG uses contextual knowledge
o Context manipulation techniques

e Conclusion
o Wrap-up and outlook
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Wrap-Up: Utilisation of Knowledge by LLMs

® How to reveal conflicts between parametric and contextual knowledge?
o Diagnostic test sets with real+counterfactual evidence can reveal how easily a
model is persuaded by contextual evidence
o Models tend to be more stubborn for static than for dynamic facts

Sara Vera Marjanovi¢*, Haeun Yu*, Pepa Atanasova, Maria Maistro, Christina Lioma, Isabelle Augenstein. DYNAMICQA: Tracing Internal Knowledge Conflicts in
Language Models. In Findings of the 2024 Conference on Empirical Methods in Natural Language Processing (EMNLP 2024), November 2024.
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Wrap-Up: Utilisation of Knowledge by LLMs

® How to know when or how a LLM actually uses retrieved contextual knowledge?
o Comparison of token prediction probabilities with and without evidence
o Context repulsion much more common for synthetic (LLM generated) evidence
o LLMs more likely to use easy to understand sources

Disentanglement of parametric vs. contextual knowledge with subspace projection
For adversarial or conflicting context, model relies more on contextual knowledge
For common-sense questions, model relies more on parametric knowledge

For hallucinated answers, model relies more on parametric knowledge than for
non-hallucinated answers

O O O O

Lovisa Hagstrém, Sara Vera Marjanovi¢, Haeun Yu, Arnav Arora, Christina Lioma, Maria Maistro, Pepa Atanasova, Isabelle
Augenstein. A Reality Check on Context Utilisation for Retrieval-Augmented Generation. In Proceedings of ACL 2025, July 2025.
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Disentanglement. CoRR, abs/2511.01706, November 2025.
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Wrap-Up: Utilisation of Knowledge by LLMs

® How to manipulate context usage of LLMs?
o Prompting, fine-tuning, decoding or mechanistic interventions have been studied
o No best method — some better at handing conflicting, others irrelevant context

Lovisa Hagstrém®, Youna Kim*, Haeun Yu, Sang-goo Lee, Richard Johansson, Hyunsoo Cho, Isabelle Augenstein. CUB:
Benchmarking Context Utilisation Technigues for Language Models. CoRR, abs/2505.16518, May 2025.
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Wrap-Up: Factuality Issues of LLMs

Those [...] who had been around for a long time, can see old ideas
reappearing in new guises [...]. But the new costumes are better
made, of better materials, as well as more becoming: so research is
not so much going round in circles as ascending a spiral.

(Karen Spark Jones, 1994)

e LLMs are excellent at recitation, not at reasoning (Yan et al., 2025)
o The same could be observed for PLMs (Petroni et al., 2019)
e LLM+RAG-based automatic fact checking models prioritise easy-to-understand

sources (Hagstrom et al., 2025)
o The same could be observed for PLMs (Augenstein et al., 2019)

Yan et al. (2025). Recitation over Reasoning: How Cutting-Edge Language Models Can Fail on Elementary School-Level Reasoning Problems? Arxiv, abs/2504.00509, April 2025.
Petroni et al. (2019). Language Models as Knowledge Bases?. EMNLP-IJCNLP 2019.

Hagstrom et al. (2019). A Reality Check on Context Utilisation for Retrieval-Augmented Generation. CoRR, abs/2412.17031, December 2024.

Augenstein et al (2019). MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims. EMNLP-IJCNLP 2019.
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