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Overview of Today's Talk

® Post-Hoc Detection and Correction of Factual Errors
o Fact Checking and Correction of Machine-Generated Content

® Probing the Parametric Knowledge of Language Models
o A Unified Framework for Input Feature Attribution Methods
o Detecting Knowledge Conflicts of Language Models

® Conclusion
o  Wrap-up
o Outlook
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The Conventional Fact Checking Pipeline
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Fact Checking and Correction of Machine-Generated Misinformation
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Take-Aways: Fact Checking of Machine-Generated Misinformation

® Overall Findings
o Evidence retrieval significant bottleneck (only half of automatically retrieved

evidence relevant to claim)

o Factual inaccuracies difficult for LLMs to correct automatically (F1 of 0.63 for
veracity prediction even with external knowledge)

o Automatically evaluating the edited responses is difficult — intrinsic measures such
as edit distance and semantic similarity are misaligned with human preferences

® Future Possibilities
o Expand benchmark, including to more languages
o Dealing with inter-claim dependencies
o Better automatic judgement of relevance of retrieved evidence

Yuxia Wang et al. (2023). Factcheck-GPT: End-to-End Fine-Grained Document-Level Fact-Checking and Correction of LLM Output.
CoRR, abs/2311.09000, November 2023.
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Parametric Knowledge and Attribution Methods

« Parametric Knowledge
* Knowledge acquired during training phase encoded in a LM’s weights

« Our study: change in knowledge acquired during LLM training and task-adaptive training for
knowledge-intensive tasks (fact checking, QA, natural language inference)

« Attribution Methods unveil the LM’s parametric knowledge used to arrive at a LM’s
prediction

* Previous methods operate on different levels (instance, neuron)
« Studied in isolation
* No consensus as to which methods work best best in which scenarios

We propose a unified evaluation framework that compares two streams of attribution

methods, to provide a comprehensive understanding of a LM’s inner workings

Haeun Yu, Pepa Atanasova, Isabelle Augenstein. Revealing the Parametric Knowledge of Language Models: A Unified Framework for
Attribution Methods. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), August 2024.



https://arxiv.org/abs/2404.18655
https://arxiv.org/abs/2404.18655
https://2024.aclweb.org/

o, UNIVERSITY OF COPENHAGEN

Parametric Knowledge and Attribution Methods

IS el WaluiglelNilelsM{VAY] : Find training instances that influence the parametric knowledge used by
the model

* Provides a human-interpretable explanation of the model’s encoded parametric knowledge

NETT e g WaluiglelVjife]sMNAY] : Locates specific neurons that hold the most important parametric
knowledge

» Provides a fine-grained view of which neurons influenced the prediction

Haeun Yu, Pepa Atanasova, Isabelle Augenstein. Revealing the Parametric Knowledge of Language Models: A Unified Framework for
Attribution Methods. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), August 2024.
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An Evaluation Framework for Attribution Methods

1) Aligning the Results of Attribution Methods
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An Evaluation Framework for Attribution Methods

2) Tests
* Neuron Attribution Faithfulness Tests Training Instances
« Fine-tuning with Influential Training Instances sorted by overall influence
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Experimental Set-up

* Instance Attribution
* Influence Function (IF) (Koh and Liang, 2017), Gradient Similarity (GS) (Charpiat et al., 2019)

* Neuron Attribution
« The application of Integrated Gradient (Dai et al., 2022)

+ Datasets
» AVeriTeC (Fact-checking) / MNLI (Natural language inference) / Commonsense QA (Question
Answering)
* Models

« opt-125m / Pythia-410m / BLOOM-560m

Haeun Yu, Pepa Atanasova, Isabelle Augenstein. Revealing the Parametric Knowledge of Language Models: A Unified Framework for
Attribution Methods. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), August 2024.
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Neuron Attribution Faithfulness Tests

Sufficiency & with opt-125m Comprehensiveness &4 with opt-125m
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Evaluation metrics Results
 Random: Randomly select the same number * Marginal differences among methods
of neurons * Only 1 neuron can recover prediction with above

» Sufficiency: Only use top-1 important neuron 70% accuracy

* Comprehensiveness: Block top-100 neurons » Hypothesis: role of attention weights
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Fine-tuning with Influential Training Instances
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* NA-Instances-Least shows better performance than other least methods
* Counter-intuitive: why would IF-Least perform so well?

» Hypothesis: lack of diversity in selected instances
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Diversity Analysis on the Group of Influential Training Instances

MNLI: Cosine Similarity MNLI: Loss
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> NA-Instances-Least results in more diverse instances than Instance Attribution method GS
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Diversity Analysis on the Group of Influential Training Instances

MNLI: Vocabulary MNLI: Input Length
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» NA-Instances-Least results in more diverse vocabulary than most other methods
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Overlap Analysis of Attribution Methods

R i - High overlap between two instance
attribution methods IF and GS
> > Also explains similar performance on fine-
- tuning with influential instances
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Overlap Analysis of Attribution Methods

AVeriTeC NA [ MNLINA W CoS-QA NA

AVeriTeC Overlap == MNLI Overlap CoS-QA Overlap - Proportion Of unique importa Nt neurons
e AVeriTeC IF-Neurons WSS MNLIIF-Neurons SN CoS-QA IF-Neurons . .
- _ found by NA is higher than those found by
: 5.4
" IF-Neurons

> Similar to findings for the diversity of top-n
influential training instances

- Most neurons found by IF-Neurons are

B - also discovered by NA

» NA methods are crucial to reveal the
source of the parametric knowledge

Proportion of the important neurons(%)

top-1 top-5 top-10
Number of neurons

% of the overlapping top-n important neurons
discovered by NA and IF-Neurons
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Take-Aways: A Unified Framework for Attribution Methods
« We assess the sufficiency and comprehensiveness of the explanations for Instance
Attribution and Neuron Attribution with different faithfulness tests

« We confirm that Instance Attribution and Neuron Attribution result in different

explanations about the knowledge responsible for the test prediction

« The faithfulness tests suggest that the neurons are not sufficient nor comprehensive

enough to fully explain the parametric knowledge used for the test prediction

« We hypothesise that this is due to the importance of the attention weights for

encoding knowledge

Haeun Yu, Pepa Atanasova, Isabelle Augenstein. Revealing the Parametric Knowledge of Language Models: A Unified Framework for
Attribution Methods. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), August 2024.
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Knowledge Conflict and Fact Dynamicity

+ Knowledge Conflict

«  |InieERnElnlelgXee il : Conflict caused by contradicting representations of the fact within the
training data, can cause uncertainty and instability of an LM

o [ofeal Y EnETle]g Ao lnlil[el : Conflict caused by the context contradicts to the parametric
knowledge

« Fact Dynamicity
« Temporality: Facts that change over time
« Disputability: Facts that vary depending on the point of view

We investigate the interaction between intra-memory conflict and context-memory

conflicts, using multiple natural causes of intra-memory conflict (i.e. fact ‘dynamicity’).

Sara Vera Marjanovi¢*, Haeun Yu*, Pepa Atanasova, Maria Maistro, Christina Lioma, Isabelle Augenstein. From Internal Conflict
to Contextual Adaptation of Language Models. CoRR, abs/2407.17023, July 2024.
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DynamicQA
. . i 2
« Featuring two different contexts and Static °00 2000
answers for the same question Temporal 2495 4900
Disputable 694 1388

+ Based on Wikidata / Wikipedia edit history

Static Q: Who is the father of George W. Bush? —> A: George H. W. Bush

In AD 117 )
A: Roman Empire

i : What is Rome the capital of?
Temporality Q ) (&) A: ltaly

In 2024

A: European
Q: Which ethnic group is most commonly /@) 3

affected by lactose intolerance? T
A: Asian

| Disputability \
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DynamicQA
Static / Temporal Disputable
« Based on PopQA (Wikidata based QA dataset) » Based on Wikipedia's list of controversial articles
« Given questions, identify context » Given context, generate questions
« Identify temporal QA pair and static pair + ldentify reverted edits in Wikipedia edit logs

» If # edits > 1, temporal
+ Else, static With two versions of Wikipedia edit history:
* Identify reverted word with edit distance
» For contexts, find the sentence from the » Filter vandalism / synonym / paraphrasing

Wikipedia article that mentions the object * Generate question with LM
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DynamicQA

* Introducing a novel dataset of knowledge conflicts in the real world
« Approximation of the degree of the knowledge conflict in the real-world
« Statisticity: Number of monthly Wikipedia article views
« Temporality: Number of Wikidata edits of object given same subject and relation

« Disputability: The occurrence of the pair of reverted edit logs

 Human Annotation on Disputable facts

« Two annotators annotated each datapoint, and conflicts were resolved by the third

annotator (Krippendorf’s alpha of 0.44)
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Measuring Intra-Memory Knowledge Conflict

1. Generate multiple answers using sampling

2. Group the answers by their semantic similarity -> Semantic sets (with NLI model)

Semantic Uncertainty (Kuhn et al., 2023) for the Intra-Memory Conflict
=> Entropy between the semantic sets

0 J
Answer4

Question |:>
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Measuring Context-Memory Knowledge Conflict

Coherent Persuasion score for the Context-Memory Conflict

Considers all possible answers from a LM

- Averaging the difference of probability distribution between all permutations of semantic
sets from question and context+question

Probabilit

Difference
‘IIIIIIIIII Illll)llllllllll

om e
[ersvors ]

'.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII‘

|
L/

4geeEEEn?®

+ Question
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Are models more likely to change their predictions for dynamic facts?

Persuasion score with context ® Unexpected Finding: Models more
easily persuaded to change
predictions for static facts

o Those are expected to have
smaller variability in the

training dataset, and thus
smaller intra-memory conflict
® Potential implications for efficacy
of retrieval-augmented
generation
o Most commonly updated facts
are the most difficult to adapt

in the model

O B N W b~ U1 O N

Static Temporal Disputable

mllama-2 mMistral mQwen2
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What are predictors of persuasion?

Estimated coefficients of linear regression model predicting the persuasion score

1
0,5
: _ _ H B
-0,5
-1
-15
Number edits Object popularity Subject popularity ~ Semantic uncertainty Semantic uncertainty
with context question only

mLlama-2 mMistral mQwen2

® Number of edits consistent strong inverse predictor for persuasion score
® Subject/object popularity insignificant effect
® Uncertainty of question with/without context not reliable predictor
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Implications: Knowledge Conflict and Fact Dynamicity

- Temporal and disputable facts, which have greater historical variability (which is expected to

be reflected in a training dataset, leading to intra-memory conflict):
« Show lower persuasion scores, fewer persuaded instances, and greater stubborn instances
» Are less likely to be updated with context, instead requiring models to be retrained or

manually edited to reflect changing information.

« Fact dynamicity (number of edits) has a greater impact on a model's likelihood for persuasion

than a fact's popularity
» Fact popularity often used to guide RAG in previous literature

» Other approaches might be required for retrieval augmentation in low-certainty domains

Sara Vera Marjanovi¢*, Haeun Yu*, Pepa Atanasova, Maria Maistro, Christina Lioma, Isabelle Augenstein. From Internal Conflict
to Contextual Adaptation of Language Models. CoRR, abs/2407.17023, July 2024.
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Wrap-Up: Factuality Challenges of Large Language Models

» Despite seemingly high performance, LLMs suffer from hallucinations
» Potential to mislead public in novel ways
 Factuality challenges:

- Truthfulness

- Unreliable evaluation

- Direct usage of misinformation

- Lack of credible sourcing

- Confident tone

- Fluent style

- Ease of access

- Halo effect

- Perceived as "knowledge base”

Augenstein et al. (2024). Factuality Challenges in the Era of Large Language Models. Nature Machine Intelligence, July 2024, to appear.
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Wrap-Up: Factuality Challenges of Large Language Models

* Threats posed by malicious LLM usage:
- Personalised attacks
- Style impersonation
- Bypassing detection
- Fake profiles

» Addressing threats:
- Detecting and correcting factual mistakes at inference time
- Better evaluation
- Retrieval-augmented generation
- Modularised knowledge-grounded framework
- Recognising Al-generated content
- Making LLMs safer — data cleansing, watermarking, privacy etc.
- Al regulation
- Public education

Augenstein et al. (2024). Factuality Challenges in the Era of Large Language Models. Nature Machine Intelligence, July 2024, to appear.
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Thank you for
your attention!
Questions?
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