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ABSTRACT
In this paper, we extend the task of semantic textual similarity to
include sentences which contain emojis. Emojis are ubiquitous on
social media today, but are often removed in the pre-processing
stage of curating datasets for NLP tasks. In this paper, we quali-
tatively ascertain the amount of semantic information lost by dis-
counting emojis, as well as show a mechanism of accounting for
emojis in a semantic task. We create a sentence similarity dataset
of 4000 pairs of tweets with emojis, which have been annotated for
relatedness. The corpus contains tweets curated based on common
topic as well as by replacement of emojis. The latter was done to
analyze the difference in semantics associated with different emojis.
We aim to provide an understanding of the information lost by
removing emojis by providing a qualitative analysis of the dataset.
We also aim to present a method of using both emojis and words
for downstream NLP tasks beyond sentiment analysis.
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1 INTRODUCTION
Social media is a goldmine of raw data for semantic processing
tasks such as sarcasm and humour detection, sentence similarity
and entity or event relations. However, social media data is user
generated text, which is highly noisy and sparse. Therefore, data
mined from social media requires preprocessing for removing noise,
which results in loss in information [18].
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More often than not, semantic classification tasks treat emojis as
noise and remove them from the dataset in the pre-processing stage
[11]. However, due to their ubiquity and variety, emojis contain
semantic information. The work that exists on taking emojis into ac-
count, for sentiment analysis and sarcasm detection, demonstrates
that utilising the semantic information they carry is beneficial
[7, 17]. With work in emoji embeddings and representation in vec-
tor spaces [3, 6], as well as some work in their semantic analysis
and comparison [19], we find that emojis can be represented, pro-
cessed and compared as semantic units. Therefore, the role played
by emojis in downstream NLP tasks and their associated semantics
must be investigated.

In this paper, we propose to analyse this phenomenon in more
depth by studying the relationship between textual similarity and
emojis. We construct a dataset of 4000 tweet pairs, and annotate
them for relatedness in a manner similar to the SICK relatedness
annotation [12]. We show the development of this dataset from
an initial 300,000 tweets, as well as the annotation procedure. We
analyze the dataset in order to provide an insight into how the
similarity of sentences changes based on the emojis used. Finally,
we compare the performance of common sentence similaritymodels
on our dataset using just word embeddings as well as word and
emoji embeddings, and provide a comprehensive analysis of the
results of the experiments.

2 RELATEDWORK
In this section, related works and recent some important develop-
ments in the NLP with emojis is highlighted, as well as current
progress in sentence similarity with a focus on distributional mod-
els.

Research on the interpretation and prediction of emojis has
developed in a similar spirit to other research in a NLP, with similar
representation learning based methods. Advances in NLP of Emojis
include affirmation of their predictability [2] and distributional
representations such as emoji2vec [6], to name a few.

Barbieri et al. [3] explore a vector skip-gram model for emojis
in tweets. The skip-gram model, introduced by Mikolov et al. [13],
was at the time the most widely used word representation learning
method, distributed as part of the word2vec package. The approach
taken by Barbieri et al. [3] is based on the similarity of emojis to
tokens. Eisner et al. [6] established pre-trained emoji embeddings,
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Figure 1: Data collection and annotation procedure

aptly named emoji2vec, which when combined with word2vec, can
be used easily for other NLP tasks.

Work on semantic sentence similarity includes statistical models,
which enforce semantic similarity in terms of a weighted average
of the occurrence of the words in a document or corpus [1], or in
methods such as relatedness and entailment, which are focused
on topical similarity. An exhaustive survey of sentence similarity
measures [8] shows that sentence similarity is comprised of three
layers of similarity, which are lexical, syntactic and semantic.

Neural approachers to sentence similarity was proposed by He
et al. [9], using CNNs to capture semantic similarity between sen-
tences, which had a Siamese structure. A similar model was emplyed
in Siamese Architecture on LSTMs for sentence similarity [14]. One
of the most well-known datasets for semantic sentence similarity
is the SICK dataset [12].

3 DATASET DEVELOPMENT
In this section, we look into the development of the dataset for
tweet similarity for tweets which contain emojis. Figure 1 shows
the dataset creation and annotation procedure graphically. Figure 2
shows examples of the annotated and curated dataset, which has
been made available publicly.1

3.1 Data Collection
We use the Twitter API2 to first collect a list of trending topics and
hashtags by geoIDs.3 Trending topics are used to collect tweets,
1https://drive.google.com/drive/folders/11KqRu4VYX4J7VDcLDUQkESrL3N3GO7Eb
2https://developer.twitter.com/en/docs/api-reference-index
3http://woeid.rosselliot.co.nz/

Figure 2: Examples of curated and annotated tweets. The
first two examples are directly collected from Twitter, the
second two are constructed by augmentation and replace-
ment of emojis.

as we hypothesise that tweets on the same topic are more likely
to have a high semantic similarity. The language of tweets is re-
stricted to English, to avoid issues arising from code mixing and
code switching, which we consider outside the scope of this paper.

A preliminary corpus in the order of 300,000 tweets was collected.
These tweets were cleansed by removing hashtags and mentions,
andwere filtered based on sentence length and the number of emojis.
Sentences with fewer that three words were removed entirely. The
remaining corpus was then organized in pairs based on the URLs
present in them, i.e. tweets with the same URL were clustered
together and then divided into pairs. Tweets with multiple URLs
were placed in multiple clusters. The intuition behind creating
pairs based on URLs was that they would be good candidates for
semantically similar tweet pairs.

For each URL, we search Twitter again for English language
tweets and added new tweets to the URL cluster. Each tweet in a
cluster is cleansed by removing URLs as well. We compute the BLEU
score [15] for each pair of tweets and remove those which have too
low or too high a BLEU score, as this can be seen as noise and might
skew the dataset. Approximately 40,000 tweets were removed from
the original set due to too low BLEU score and another 44,000 were
removed because their BLEU score values were too high. Repeated
pairs are removed and the clusters are then merged and shuffled.

We also augment this dataset by modifying the emojis used in
the tweets. For each tweet that contains an emoji, we replace it with
one of the top 10 most popular emojis4. These constructed tweets
are then paired with the original tweets. These pairs are added in
order to study how the semantic information represented by emojis
in a context changes the meaning of tweets. These constructed
tweets are then added to the dataset. It was found that the most
common emojis were usually associated with sentiment and/or
irony. This has been detailed in 3.3.

4Curated from the http://emojitracker.com/ API

https://drive.google.com/drive/folders/11KqRu4VYX4J7VDcLDUQkESrL3N3GO7Eb
https://developer.twitter.com/en/docs/api-reference-index
http://woeid.rosselliot.co.nz/
http://emojitracker.com/
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Table 1: Examples of emojis that denote sentiment and irony,
as well as semantically ambiguous emojis

Table 2: Examples of semantic shift due to different emojis
being used

3.2 Annotation Procedure
Once the dataset was collected, we created annotation guidelines
for labelling the semantic similarity for each tweet pair. The guide-
lines used are a modification of the SICK annotation guidelines
for measuring relatedness [12]. Annotators were asked to mark
how similar they perceived two tweets to be, in terms of their how
close their meanings are. Annotators were asked to provide higher
score to those tweet pairs which are partly synonymous with one
another, disregarding additional semantic content in one over the
other, provided the semantic content does not change the tone of
the tweets.

We use ten annotators for this project between the ages of 17
and 22, who are well versed with Twitter and the meanings of emo-
jis in context. The corpus is split into half and the annotators are
provided one of the two sets to label. Therefore, each pair of tweets
is annotated five times. Each annotator labels each tweet pair with
a score from 1 to 5, 1 being very dissimilar and unrelated tweets,
and 5 being the identical or very similar tweets. Each annotator
was required to consider the contribution of the emojis in the se-
mantic content of the tweet itself, but was not told the nature of the
task at hand so as to reduce the annotators’ bias towards the task.
After having collated the annotations, scores are averaged across
annotators.

3.3 Analyzing the Dataset
In this section, we provide a detailed analysis of the dataset. We
find that in emojis highly correlated with sentiment and irony
provide little semantic content, and are also themost popular emojis.
However, if an emoji associated with sentiment or irony was used in
place of an emoji with lexical semantic characteristics, the difference
in meaning was found to be significant by almost all the annotators.
There exists a class of emojis which has been used ambiguously,
to provide both semantic meaning as well as provide sentiment.
We find that these emojis are quite commonly used with emojis
showing only sentiment, and that replacing these makes the tweets
almost unrelated to each other.

We find that relatedness is directly associated with the category
of the emoji being replaced. As mentioned earlier, the most common
emojis are those which are associated with sentiment and/or irony.

As seen in Table 2, we find that the class of the emoji being re-
placed with a sentiment emoji directly affect the relatedness score.
Tweets with the original and modified tweets both containing sen-
timent emojis show high relatedness scores (shown in example 3
on Table 2). However, emojis which have semantic information
(see Example 1 and Example 4 in Table 2), upon replacement, show
much lower relatedness scores. We attribute this to the stripping of
semantic information when replaced with a sentiment emoji, akin
to the replacement of a word with a smiley (or the like). Interest-
ingly, ambiguous emojis show a spectrum of relatedness scores on
replacement. This is because they carry both sentiment and seman-
tic information. When replaced with emojis of a similar sentiment,
the emojis show high (but not complete) relatedness. However, if
the sentiment of the emoji is vastly different from that of the origi-
nal in the text, there is a large drop in the relatedness score (again
seen in Example 1).

4 EXPERIMENTS
In this section, we experiment with different models and baseline
metrics for sentence similarity. To show the difference between
accounting for emojis in the task of sentence similarity or not
on our dataset, we use word embeddings both with and without
emoji representations. Given that sentence similarity is typically
framed as a regression task, which we also follow here, we use
mean squared error as our loss function, along with the Pearson
Correlation Metric [5]. Our experiments use the Adadelta optimiser
[20] for all of our models.

4.1 Models and Embeddings
For experiments on sentence similarity, we use three models:

(1) LSTM + FC - An LSTM Sentence Encoder [10] applied to
the individual sentences. The final outputs for each sentence
of the sentence pair is taken and concatenated with the other
and passed to a fully connected layer reducing the dimen-
sionality to 1. This model serves as a baseline model for this
task and provides intuition about the relative performance
of more complex neural models for semantic similarity.

(2) MaLSTM - The Manhattan LSTM Neural Network archi-
tecture (MaLSTM) is a popular architecture that uses the
Manhattan distance to compute the difference between two
input sentences, and so it can be used for sentence similar-
ity tasks [14]. MaLSTM is the state-of-the-art in semantic
sentence similarity tasks and therefore can be used to de-
termine how well this model does with and without emoji
information.

(3) CASNN - Cross Attention SiameseNeural Network, or CASNN,
is a Siamese network that employs cross attention on indi-
vidual embeddings to generate a feature representation of
two input sentences from a bidirectional LSTM, which is
then normalized and compared for computing similarity [21].
The CASNN model was used to motivate the use of atten-
tion based architectures for similarity tasks which provide
relative importance at a lexical (or emoji) level.

Each model is given four different input embeddings, which is
done in order to compare the performance of pretrained embeddings
both with and without emojis. We use word2vec [13] and GloVe
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[16] both, in order to showcase the difference associated with using
global vector representation pretrained on Twitter data, as opposed
to the vector space being shared by the embeddings with emojis.
For embeddings with emojis, we use word2vec with emoji2vec [6]
and the combined skip-grammodel Barbieri et al. [4]. The word2vec
and emoji2vec embeddings have words and emojis residing in two
different vector spaces, and the combined skip-grammodel provides
words and emojis that are present in the same vector space. We use
both in order to contrast the performance of using two independent
vector spaces for words and emojis versus the same vector space as
Mikolov et al. [13].

For each of the experiments, we perform model ablations on
dimension sizes of 50, 100 and 200. The models are run on an
80-20 train-test split. In case of considering naive word2vec and
GloVe, the emojis were ignored entirely, whereas for the combined
models, the emoji representation was provided along with the word
representation.

4.2 Results and Analysis
We present the results of the experiments described above. We also
provide some analysis and insights into using these networks for
the sentence similarity task and on the need to analyse emojis in
NLP more widely.

Generally, GloVe embeddings perform better than the vanilla
word2vec embeddings. However, performance of the emoji em-
beddings in conjunction with word embeddings changes with the
network used for this task. However, across networks, we can see
that using emoji embeddings tends to result in a lowermean squared
error and higher Pearson Correlation, which can be attributed to
the semantics associated with accounting for emojis. Pearson Cor-
relation and MSE do not agree on a few of the models, as Pearson’s
depends of normalized covariance rather than just the average error
value.

Interestingly, for sentence similarity, considering words and
emojis in equivalent but different spaces improves performance as
opposed to using the same space for their representation.

4.2.1 LSTM + Fully Connected Layer. First, we analyze the results
of the baselinemodel of a naive LSTM encoder and a fully connected
layer. We see here that using word2vec + emoji2vec combined
outperfoms all other embeddings for this model. The combined
skip-gram model does not perform well when using this simple
model.

On average, increasing the hidden dimensions improves perfor-
mance, but there is risk of rapid overfitting with increasing the
number of hidden layers on such a simple model. We see that in
the difference of trends between MSE and Pearson’s scores. The
word2vec + emoji2vec embeddings on 100 and 200 hidden dimen-
sions are the best performing. GloVe shows lowMean Squared Error,
but also shows low Pearson’s scores. Table 3 shows the results of
this model.

4.2.2 MaLSTM Model. The Manhattan LSTM or MaLSTM model
shows higher mean squared errors. However, it also shows the
highest Pearson Correlation among all the models. Naive word2vec
and GloVe embeddings do not capture enough information, as is

Hidden
Dimension
Size

Word Embedding MSE Pearson
Coefficient

50 word2vec 1.6139 16.1149
100 word2vec 1.6147 13.6969
200 word2vec 1.6144 12.8177
50 GloVe 1.6142 9.4756
100 GloVe 1.6143 13.4933
200 GloVe 1.6144 18.7515
50 word2vec + emoji2vec 1.6146 7.6368
100 word2vec + emoji2vec 1.6143 23.2121
200 word2vec + emoji2vec 1.6131 22.2103
50 Combined Skip-gram 1.6721 9.5949
100 Combined Skip-gram 1.6711 3.8725
200 Combined Skip-gram 1.6752 11.9634

Table 3: Results of LSTM + FC on various Hidden Dimension
Sizes and Embeddings

Hidden
Dimension
Size

Word Embedding MSE Pearson
Coefficient

50 word2vec 3.4276 26.2816
100 word2vec 3.4241 26.3179
200 word2vec 3.4228 27.1239
50 GloVe 3.4882 26.5956
100 GloVe 3.5021 25.9201
200 GloVe 3.5424 26.2441
50 word2vec + emoji2vec 3.4375 32.9631
100 word2vec + emoji2vec 3.4209 33.3847
200 word2vec + emoji2vec 3.4361 33.0706
50 Combined Skip-gram 3.5250 35.8767
100 Combined Skip-gram 3.5400 35.8165
200 Combined Skip-gram 3.5204 35.9449

Table 4: Results of Manhattan LSTM on various Hidden Di-
mension Sizes and Embeddings

seen in the high error rates and low Pearson Coefficients. Table 4
shows the scores across dimensions sizes and embeddings.

Interestingly, while the word2vec + emoji2vec embeddings pro-
vide lower mean squared errors with the lowest at 100 hidden
dimensions, we see that the combined skip-gram model provides
much higher Pearson’s Correlation. We conjecture that this is due
to lower normalized covariance of the Manhattan distance predic-
tion and the actual value is lower when using a single feature space
for a large number of predictions, which is not possible with shared
feature spaces as seen for emoji2vec+word2vec.
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Hidden
Dimension
Size

Word Embedding MSE Pearson
Coefficient

50 word2vec 1.5824 27.0829
100 word2vec 1.5822 26.1527
200 word2vec 1.5858 20.2780
50 GloVe 1.5835 22.2103
100 GloVe 1.5838 26.1345
200 GloVe 1.5852 25.8422
50 word2vec + emoji2vec 1.5822 25.9479
100 word2vec + emoji2vec 1.5823 28.3717
200 word2vec + emoji2vec 1.5824 9.0729
50 Combined Skip-gram 1.5660 19.5915
100 Combined Skip-gram 1.5662 19.9033
200 Combined Skip-gram 1.5725 18.1376

Table 5: Results of CASNN on various Hidden Dimension
Sizes and Embeddings

4.2.3 Cross Attention Siamese Bi-LSTM Model. The Cross Atten-
tion Siamese Neural Network Model (CASNN) employs a bidirec-
tional LSTM with shared weights to encode the sentence, from
which we calculate the relative importance of each input based on a
cross attention score. We use a dropout of 0.5, i.e. drop the weights
randomly in order to reduce the chances of overfitting based on the
probability distributions of the generated attention scores. Table 5
shows the results of the CASNN model for various dimension sizes
and embeddings.

Here too, we observe that the use of emoji information accounts
for a lower MSE and higher Pearson Correlation. Interestingly, the
latter is much higher for combined skip-gram, that for the other
models, with comparable MSE values, which might indicate some
utility in a single semantic representation of emojis and words
rather than two aligned spaces. However, more experiments need
to be run before this can be concluded.

5 CONCLUSION
In this paper, we present the creation of a dataset for sentence simi-
larity for sentences with emojis. We do so in order to showcase the
need to account for the processing of emojis in NLP on social media
data. We highlight the development of the dataset, including cleans-
ing, preprocessing and annotation. We run multiple experiments
and model ablations on the dataset and show that accounting for
emojis in a semantically driven task such as sentence/tweet relat-
edness provides important semantic information.

We hope to use these preliminary experiments to showcase that
emojis can be used to extract more semantic content such as sar-
casm, emphasis and subject matter. In the future, experiments on
embedding alignment between word or character representations
as well as evaluation of sentence similarity based on weighted dis-
tribution of attention can be considered on this dataset to improve
results. Furthermore, contextual representations of emojis with text

can prove useful for applications of NLP in social media, which can
be tested on our dataset.
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