
KU-MTL at SemEval-2018 Task 1:
Multi-task Identification of Affect in Tweets

Thomas Nyegaard-Signori, Casper Veistrup Helms,
Johannes Bjerva, Isabelle Augenstein

Department of Computer Science
University of Copenhagen

{sfq340,wqx727}@alumni.ku.dk, {bjerva,augenstein}@di.ku.dk

Abstract

We take a multi-task learning approach to the
shared Task 1 at SemEval-2018. The general
idea concerning the model structure is to use
as little external data as possible in order to
preserve the task relatedness and reduce com-
plexity. We employ multi-task learning with
hard parameter sharing to exploit the related-
ness between sub-tasks. As a base model, we
use a standard recurrent neural network for
both the classification and regression subtasks.
Our system ranks 32nd out of 48 participants
with a Pearson score of 0.557 in the first sub-
task, and 20th out of 35 in the fifth subtask
with an accuracy score of 0.464.

1 Introduction

We consider the task of identifying affect in
tweets, as described in Mohammad et al. (2018).
Given a tweet, the task is to predict the emo-
tions and their corresponding intensities which the
tweet portrays. Previous approaches to this task
are outlined in Mohammad and Bravo-Marquez
(2017). The winning team of the SemEval EmoInt
2017, presented in Goel et al. (2017), tackled a
similar task as the regression task presented in
this year’s SemEval Task 1. The winning sys-
tem utilised an ensemble approach consisting of 5
sub-models and using a weighted average of these
models to come up with the final result. This
model is utilising most of the different approaches
mentioned in the literature and combining them
into one and with great success.

Our work bears resemblance to the runner up
in the SemEval EmoInt 2017, Köper et al. (2017),
who used a comparatively simple model consist-
ing of a CNN-LSTM neural network. The differ-
ence between the models presented in this paper
and the IMS system is the utilisation of lexicons,
and that we take a multi-task learning approach.

We focus on two subtasks of this shared task,
namely emotion intensity regression and emotion
classification (Sub-tasks 1 and 5). These were
chosen because of the overlap in tweets but differ-
ing truth labels value and types. Furthermore, we
only consider the English versions of the subtasks.

2 System Description

Our system is a standard RNN, with the exception
that we approach the task using multi-task learning
via hard parameter sharing (Caruana, 1993). We
will now present the details of our implementation.

2.1 Preprocessing of Text and Textual
Representation

We use embedded word representations as input to
our system, initialised to the weights from a large
set of pre-trained embeddings which have been
trained on Twitter data (∼400 million tweets).
These embeddings were obtained from Godin
et al. (2015). Words which are out-of-vocabulary
are replaced with UNK. Furthermore, user men-
tions and numbers get mapped to a place-holder
instead of their actual values.

Since the model used both word and character
representations, the characters are read in sepa-
rately, although the same basic principle is fol-
lowed. Every character is represented by an em-
bedded representation, which is initialised ran-
domly prior to training.

2.2 Augmentation of Data
Since the tweets have different formats of truth
labels, one is a singular value (regression) and
one is a multi-label list (classification), reading in
the labels has to be augmented. Since the tweets
are reused in the two tasks, some of the regres-
sion tweets can be augmented with their respective
classification label, although, if no classification
label is present, the truth labels are set to -1, which



Figure 1: The word input part of the full model.

then acts as a mask. Since there are more regres-
sion tweets than classification, the augmentation is
done this way around. All the tweets are padded
differently based on whether or not the tweet is be-
ing read as a word representation or character rep-
resentation, and tweets longer than the specified
padding values are cut down to size.

2.3 Word Input Model

The word input to the model is 60 · 400 dimen-
sional vectors that have been passed through the
preprocessing and augmentation specified in sec-
tion 2.1 and 2.2 ((7) in Figure 1). These vectors
are then passed into two 250-dimensional, bidirec-
tional GRUs which traverse the tweet front to back
and vice versa, and the outputs of the two GRU
layers are then concatenated ((8) and (9) in Fig-
ure 1). This output is then batch normalised and
dropout is applied ((10) in Figure 1). This output
of the word submodel is then concatenated later
with the character submodel.

2.4 Character Input Model

The character input to the model is 256 · 400 di-
mensional vectors that have been through the same
preprocessing and augmentation as the word in-
puts ((1) in Figure 2). These vectors then get
passed into a residual neural network which works
as a loop of batch normalisations, dropout appli-
cations and one-dimensional convolutions ((2) in
Figure 2). Each loop ends with an addition of the
values at the start of the loop and the current result
and then a max pooling. These vectors are then
passed into two GRU layers similar to the word
input ((4) and (5) in Figure 2) which are then con-
catenated and passed along to be connected with
the word input part ((6) in Figure 2).

2.5 Full Model

The combined model consists of four submodels,
one for each regression emotion. The combined

Figure 2: The character input part of the full model.

embeddings are used to generate classification la-
bels. A high level overview can be seen in Fig-
ure 3.

2.6 Loss Functions

Since the model is a multitask model, more than
one loss function was needed. The model solves
two tasks which can not share loss functions be-
cause of the inherent nature of the problem, one
being a regression problem and the other a classi-
fication problem.

Regression loss function For the regression
output of the model, mean squared error was cho-
sen as a way to optimise the model with regards
to Pearson-score. Since mean squared error seeks
to minimise the difference between the prediction
and the gold score, a low mean squared error will
bring the Pearson score closer to one.

Classification loss function The loss function
for the classification is a bit more convoluted since
all regression tweets have regression labels, but
not all regression tweets have classification labels.
This is handled by way of a mask and the augmen-
tation specified in section 2.2. Since the model
has eleven output layers, there is a loss function
for each of the eleven emotions/layers. The loss
function ensures that tweets with no classification
labels do not impact the updating of the weights
of the model by giving the predicted values a loss
of zero. The binary cross entropy loss function
was modified to include a weighting parameter be-
cause of the uneven distribution of ones and zeros.
The objective of the model is to identify the emo-
tions indicated by a tweet, and as such a value of
one is assigned a higher value.



Figure 3: The character input part of the full model.

3 Error Analysis

3.1 Regression Scores
Since there is a considerable overlap in tweets,
some tweets are reused in multiple emotions from
Task 1 which then in turn can be reused a single
time in Task 5. The actual numbers of unique
and “duplicate” tweets are hard to resolve and
presented a challenge in the first iterations of the
model. Gold and predicted scores for an example
instance are shown in Table 1 and 2.

Anger score Fear score Joy score Sadness score

Gold : 0.517
Pred : 0.449

Gold : 0.800
Pred : 0.953

Gold : 0.197
Pred : 0.139

Gold : 0.707
Pred : 0.756

Table 1: Good prediction for regression task with
the following tweet:
“we need to do something. something must be
done!!!!!’ your anxiety is amusing. nothing will
be done. despair.”.

Anger score Fear score Joy score Sadness score

Gold : 0.953
Pred : 0.620

Gold : 0.621
Pred : 0.346

Gold : —–
Pred : 0.430

Gold : 0.680
Pred : 0.326

Table 2: Bad prediction for regression task with the
following tweet:
”Don’t fucking tag me in pictures as ’family first’
when you cut me out 5 years ago. You’re no one to
me.”.

It is noticeable from the scoring shown in Ta-
ble 1 and 2 that keywords such as ’familiy’, ’anx-
iety’ and ’fucking’, for example, have a very large
effect on the values predicted. These keyword cor-

relations might have been better handled with the
use of external data, such as emotive lexicons and
the likes.

3.2 Classification Scores
Keeping in mind that the classification labels rep-
resent the emotions anger, anticipation, disgust,
fear, joy, love, optimism, pessimism, sadness, sur-
prise and trust, exemplary classification predic-
tions are presented in Table 3 and Table 4.

Predictions Hit percentage

Gold : 0 0 1 0 0 0 0 0 1 0 0
Pred : 0 1 1 0 0 0 0 0 0 0 0

82%

Table 3: Scores for classification task with the fol-
lowing tweet:
“Not sure tequila shots at my family birthday
meal is up there with the best ideas I’ve ever had
#grim”.

Predictions Hit percentage

Gold : 0 1 0 0 1 1 1 0 0 0 1
Pred : 1 0 1 0 0 0 0 0 0 0 0

36%

Table 4: Bad prediction scores for classification
task with the following tweet:
”SheenKL I assume the manga is #good?”.

There are certain structures that are prevalent
in the correct and incorrect predictions. When
looking at the amount of labels that are set in the
datasets, it is evident just from the small amount of
surprise or trust labels that have been set that these



emotions will be harder to predict, since there are
so few points of reference. Furthermore, when
both anger and disgust labels are present in a tweet
the model predicts better. This can be explained
by the fact that there are a significant amount of
tweets with these two labels.

Average score Anger Fear Joy Sadness Classification

0.551 0.521 0.606 0.538 0.563 0.464

Table 5: Overall scoring of the model, both regres-
sion and classification (Task 1 and 5).

Table 5 describes the overall scores from the
model run on the test set in the evaluation period
of the shared task.

4 Related Work

Multi-task Learning Neural networks make
multi-task learning via (hard) parameter sharing
particularly easy (Caruana, 1993) and has shown
to be successful for a variety of NLP tasks, such
as machine translation (Dong et al., 2015; Lu-
ong et al., 2016), keyphrase boundary classifi-
cation (Augenstein and Søgaard, 2018), tagging
(Martı́nez Alonso and Plank, 2017; Bjerva et al.,
2016), complex word identification (Bingel and
Bjerva, 2018), and natural language understanding
(Augenstein et al., 2017). For sequence labelling,
many combinations of tasks have been explored,
e.g., by Martı́nez Alonso and Plank (2017); Bjerva
(2017a,b). An analysis of different task com-
binations was performed by Søgaard and Gold-
berg (2016); Bingel and Søgaard (2017). Ruder
et al. (2017) presented a more flexible architecture,
which learned what to share between the main and
auxiliary tasks, and might require further investi-
gation in future work. Augenstein et al. (2017)
combine multi-task learning with semi-supervised
learning for strongly related tasks with different
output spaces. For this shared task, we opt for a
simple hard parameter sharing strategy, though we
would expect to see improvements with more in-
volved architectures.

5 Conclusion

In this paper, we present our system for SemEval-
2018 Task 1. We employed a simple multi-task
architecture with hard parameter sharing to model
Subtasks 1 and 5 jointly. The model achieved an
average performance compared to the rest of the

participants. We argue this is due to our not using
external data or performing extensive additional
engineering.

Acknowledgments

Isabelle Augenstein is supported by Eurostars
grant Number E10138. We further gratefully ac-
knowledge the support of NVIDIA Corporation
with the donation of the Titan Xp GPU used for
this research.

References
Isabelle Augenstein, Sebastian Ruder, and Anders

Søgaard. 2017. Multi-task learning of keyphrase
boundary detection. In Proceedings of ACL.

Isabelle Augenstein and Anders Søgaard. 2018. Multi-
task learning of pairwise sequence classification
tasks over disparate label spaces. In Proceedings of
NAACL, to appear.

Joachim Bingel and Johannes Bjerva. 2018. Cross-
lingual complex word identification with multitask
learning. In Proceedings of Shared Task on CWI at
BEA18.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In EACL. pages 164–169.

Johannes Bjerva. 2017a. One Model to Rule them all
– Multitask and Multilingual Modelling for Lexical
Analysis. Ph.D. thesis, University of Groningen.

Johannes Bjerva. 2017b. Will my auxiliary tagging
task help? Estimating Auxiliary Tasks Effectivity in
Multi-Task Learning. In Proceedings of NoDaLiDa.
Linköping University Electronic Press, 131, pages
216–220.

Johannes Bjerva, Barbara Plank, and Johan Bos. 2016.
Semantic tagging with deep residual networks. In
Proceedings of COLING 2016. pages 3531–3541.

Richard A Caruana. 1993. Multitask connectionist
learning. In In Proceedings of the 1993 Connection-
ist Models Summer School.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-Task Learning for Mul-
tiple Language Translation. In Proceedings of ACL.
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