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Introduction

The 4th Workshop on Representation Learning for NLP (RepL4NLP) will be hosted by ACL 2019 and
held on 2 August 2019. The workshop is being organised by Isabelle Augenstein, Spandana Gella,
Sebastian Ruder, Katharina Kann, Burcu Can, Alexis Conneau, Johannes Welbl, Xian Ren and Marek
Rei; and advised by Kyunghyun Cho, Edward Grefenstette, Karl Moritz Hermann, Chris Dyer and Laura
Rimell. The workshop is organised by the ACL Special Interest Group on Representation Learning
(SIGREP) and receives generous sponsorship from Facebook AI Research, Amazon, and Naver.

The 4th Workshop on Representation Learning for NLP aims to continue the success of the 1st
Workshop on Representation Learning for NLP (about 50 submissions and over 250 attendees; second
most attended collocated event at ACL’16 after WMT), 2nd Workshop on Representation Learning
for NLP and 3rd Workshop on Representation Learning for NLP. The workshop was introduced as a
synthesis of several years of independent *CL workshops focusing on vector space models of meaning,
compositionality, and the application of deep neural networks and spectral methods to NLP. It provides a
forum for discussing recent advances on these topics, as well as future research directions in linguistically
motivated vector-based models in NLP.
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Abstract

We present Deep Generalized Canonical Cor-
relation Analysis (DGCCA) – a method for
learning nonlinear transformations of arbitrar-
ily many views of data, such that the resulting
transformations are maximally informative of
each other. While methods for nonlinear two-
view representation learning (Deep CCA, (An-
drew et al., 2013)) and linear many-view rep-
resentation learning (Generalized CCA (Horst,
1961)) exist, DGCCA combines the flexibil-
ity of nonlinear (deep) representation learning
with the statistical power of incorporating in-
formation from many sources, or views. We
present the DGCCA formulation as well as an
efficient stochastic optimization algorithm for
solving it. We learn and evaluate DGCCA rep-
resentations for three downstream tasks: pho-
netic transcription from acoustic & articula-
tory measurements, recommending hashtags,
and recommending friends on a dataset of
Twitter users.

1 Introduction

Multiview representation learning refers to set-
tings where one has access to many “views” of
data at train time. Views often correspond to dif-
ferent modalities about examples: a scene repre-
sented as a series of audio and image frames, a so-
cial media user characterized by the messages they
post and who they friend, or a speech utterance and
the configuration of the speaker’s tongue. Multi-
view techniques learn a representation of data that
captures the sources of variation common to all
views.

Multiview representation techniques are attrac-
tive since a representation that is able to explain
many views of the data is more likely to capture
meaningful variation than a representation that

∗ Work done while at Johns Hopkins University.
† Now at Google.

is a good fit for only one of the views. These
methods are often based on canonical correlation
analysis (CCA), a classical statistical technique
proposed by Hotelling (1936). CCA-based tech-
niques cannot currently model nonlinear relation-
ships between arbitrarily many views. Either they
are able to model variation across many views, but
can only learn linear mappings to the shared space
(Horst, 1961), or they can learn nonlinear map-
pings, but they cannot be applied to data with more
than two views using existing techniques based
on Kernel CCA (Hardoon et al., 2004) and Deep
CCA (Andrew et al., 2013).

We present Deep Generalized Canonical Cor-
relation Analysis (DGCCA). DGCCA learns a
shared representation from data with arbitrarily
many views and simultaneously learns nonlinear
mappings from each view to this shared space.Our
main methodological contribution is the deriva-
tion of the gradient update for the Generalized
Canonical Correlation Analysis (GCCA) objective
(Horst, 1961).1 We evaluate DGCCA-learned rep-
resentations on three downstream tasks: (1) pho-
netic transcription from aligned speech & articu-
latory data, (2) Twitter hashtag and (3) friend rec-
ommendation from six text and network feature
views. We find that features learned by DGCCA
outperform linear multiview techniques on these
tasks.

2 Prior Work

Some of the most successful techniques for multi-
view representation learning are based on canon-
ical correlation analysis and its extension to the
nonlinear and many view settings (Wang et al.,
2015b,a).

1See https://bitbucket.org/adrianbenton/
dgcca-py3 for an implementation of DGCCA along with
data from the synthetic experiments.
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Canonical correlation analysis (CCA) Canon-
ical correlation analysis (CCA) (Hotelling, 1936)
is a statistical method that finds maximally cor-
related linear projections of two random vectors.
It is a fundamental multiview learning technique.
Given two input views, X1 ∈ Rd1 and X2 ∈
Rd2 , with covariance matrices, Σ11 and Σ22, re-
spectively, and cross-covariance matrix Σ12, CCA
finds directions that maximize the correlation be-
tween these two views:

(u∗1, u
∗
2) = argmax

u1∈Rd1 ,u2∈Rd2

corr(u>1 X1, u
>
2 X2)

Since this formulation is invariant to affine trans-
formations of u1 and u2, we can write it as the
following constrained optimization formulation:

(u∗1, u
∗
2) = argmax

u1∈Rd1 ,u2∈Rd2

u>1 Σ12u2 (1)

such that u>1 Σ11u1 = u>2 Σ22u2 = 1. This tech-
nique has two limitations that have led to signifi-
cant extensions: (1) it is limited to learning rep-
resentations that are linear transformations of the
data in each view, and (2) it can only leverage two
input views.

Deep Canonical Correlation Analysis (DCCA)
Deep CCA (DCCA) (Andrew et al., 2013) ad-
dresses the first limitation by finding maximally
correlated non-linear transformations of two vec-
tors. It passes each of the input views through neu-
ral networks and performs CCA on the outputs.

Let us use f1(X1) = Z1 and f2(X2) = Z2

to represent the network outputs. The weights,
W1 and W2, of these networks are trained through
standard backpropagation to maximize the CCA
objective:

(u∗1, u
∗
2,W

∗
1 ,W

∗
2 ) = argmax

u1,u2

corr(u>1 Z1, u
>
2 Z2)

Generalized Canonical Correlation Analysis
(GCCA) Generalized CCA (GCCA) (Horst,
1961) addresses the limitation on the number of
views. It solves the optimization problem in Equa-
tion 2, finding a shared representation G of J
different views, where N is the number of data
points, dj is the dimensionality of the jth view,
r is the dimensionality of the learned representa-
tion, and Xj ∈ Rdj×N is the data matrix for the
jth view.

minimize
Uj∈Rdj×r,G∈Rr×N

J∑

j=1

‖G− U>j Xj‖2F

subject to GG> = Ir

(2)

Solving GCCA requires finding an eigendecompo-
sition of an N ×N matrix, which scales quadrat-
ically with sample size and leads to memory con-
straints.

Unlike CCA and DCCA, which only learn pro-
jections or transformations on each of the views,
GCCA also learns a view-independent represen-
tation G that best reconstructs all of the view-
specific representations simultaneously. The key
limitation of GCCA is that it can only learn linear
transformations of each view.

3 Deep Generalized Canonical
Correlation Analysis (DGCCA)

We present Deep GCCA (DGCCA): a multi-
view representation learning technique that bene-
fits from the expressive power of deep neural net-
works and can leverage statistical strength from
more than two views. More fundamentally, Deep
CCA and Deep GCCA have very different objec-
tives and optimization problems, and it is not im-
mediately clear how to extend deep CCA to more
than two views.

DGCCA learns a nonlinear map for each view
in order to maximize the correlation between the
learned representations across views. In train-
ing, DGCCA passes the input vectors in each
view through multiple layers of nonlinear trans-
formations and backpropagates the gradient of the
GCCA objective with respect to network param-
eters to tune each view’s network. The objective
is to train networks that reduce the GCCA recon-
struction error among their outputs. New data can
be projected by feeding each view through its re-
spective network.

Problem Consider a dataset of J views and let
Xj ∈ Rdj×N denote the jth input matrix.The net-
work for the jth view consists of Kj layers. As-
sume, for simplicity, that each layer in the jth view
network has cj units with a final (output) layer of
size oj . The output of the kth layer for the jth

view is hjk = s(W j
kh

j
k−1), where s : R → R is a

nonlinear activation function and W j
k ∈ Rck×ck−1

is the weight matrix for the kth layer of the jth

view network. We denote the output of the final
layer as fj(Xj).

DGCCA can be expressed as the following op-
timization problem: find weight matrices W j =
{W j

1 , . . . ,W
j
Kj
} defining the functions fj , and

linear transformations Uj (of the output of the jth

2



network), for j = 1, . . . , J , that

minimize
Uj∈Roj×r,G∈Rr×N

J∑

j=1

‖G− U>j fj(Xj)‖2F (3)

where G ∈ Rr×N is the shared representation we
are interested in learning, subject to GG> = Ir.

Optimization We solve the DGCCA optimiza-
tion problem using stochastic gradient descent
(SGD) with mini-batches. In particular, we es-
timate the gradient of the DGCCA objective in
Equation 3 on a mini-batch of samples that is
mapped through the network and use backpropa-
gation to update the weight matrices, W j’s. Be-
cause DGCCA optimization is a constrained opti-
mization problem, it is not immediately clear how
to perform projected gradient descent with back-
propagation. Instead, we characterize the objec-
tive function of the GCCA problem at an optimum
and compute its gradient with respect to the in-
puts to GCCA (i.e. with respect to the network
outputs), which are subsequently backpropagated
through the network to update W js.

Gradient Derivation The solution to the GCCA
problem is given by solving an eigenvalue prob-
lem. In particular, define Cjj = f(Xj)f(Xj)

> ∈
Roj×oj , to be the scaled empirical covariance
matrix of the jth network output, and Pj =
f(Xj)

>C−1jj f(Xj) ∈ RN×N to be the corre-
sponding projection matrix that whitens the data;
note that Pj is symmetric and idempotent. We de-
fine M =

∑J
j=1 Pj . Since each Pj is positive

semi-definite, so is M . One can then check that
the rows of G are the top r (orthonormal) eigen-
vectors of M , and Uj = C−1jj f(Xj)G

>. Thus, at
the minimum of the objective, we can rewrite the
reconstruction error as follows:

J∑

j=1

‖G− U>j fj(Xj)‖2F = rJ − Tr(GMG>)

Minimizing the GCCA objective (with respect
to the weights of the neural networks) means max-
imizing Tr(GMG>), which is the sum of eigen-
values L =

∑r
i=1 λi(M). Taking the derivative of

L with respect to each output layer fj(Xj) gives:

∂L

∂fj(Xj)
= 2UjG− 2UjU

>
j fj(Xj)

Thus, the gradient is the difference between the r-
dimensional auxiliary representation G embedded

Figure 1: Three synthetic views are displayed in the top
row, and the bottom rows displays the matrixG learned
by GCCA (left) and DGCCA (right).

into the subspace spanned by the columns of Uj

(the first term) and the projection of the actual data
in fj(Xj) onto said subspace (the second term).

4 Experiments

4.1 Synthetic Multiview Mixture Model

We apply DGCCA to a small synthetic data set
to show how it preserves the generative structure
of data sampled from a multiview mixture model.
The three views of the data we use for this experi-
ment are plotted in the top row of Figure 1. Points
that share the same color across different views are
sampled from the same mixture component.

Importantly, in each view, there is no linear
transformation of the data that separates the two
mixture components. This point is reinforced
by Figure 1 (bottom left), which shows the two-
dimensional representation G learned by applying
linear GCCA to the data in plotted in the top row.
The learned representation completely loses the
structure of the data. In contrast, the representa-
tion G learned by DGCCA (bottom right) largely
preserves the structure of the data, even after pro-
jection onto the first coordinate. In this case, the
input neural networks for DGCCA had three hid-
den layers with ten units each, with randomly-
initialized weights.

4.2 Phoneme Classification

We perform experiments on the University of
Wisconsin X-ray Microbeam Database (XRMB)
(Westbury, 1994), a collection of acoustic & ar-
ticulatory recordings along with phonemic labels.
We present phoneme classification results on the
acoustic vectors projected using DCCA, GCCA,
and DGCCA. Acoustic and articulatory data are
set as the first two views and phoneme labels are
set as the third view for GCCA and DGCCA, and
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Figure 2: Confusion matrices over phonemes for
speaker-dependent GCCA (left) and DGCCA (right).

K-nearest neighbor classification (Cover and Hart,
1967) is then run on the projected result.

Data We use the same split of the data as Arora
and Livescu (2014). To limit experiment runtime,
we use a subset of speakers for our experiments.
We run a set of cross-speaker experiments using
the male speaker JW11 for training and two splits
of JW24 for tuning and testing. We also perform
parameter tuning for the third view with 5-fold
cross validation using a single speaker, JW11. For
both experiments, we use acoustic and articulatory
measurements as the two views in DCCA. Fol-
lowing the pre-processing in Andrew et al. (2013),
we get 273 and 112 dimensional feature vectors
for the first and second view respectively. Each
speaker has ∼50,000 frames. For the third view in
GCCA and DGCCA, we use 39-dimensional one-
hot vectors corresponding to the labels for each
frame, following Arora and Livescu (2014).

Parameters We use a fixed network size and
regularization for the first two views, each con-
taining three hidden layers. Hidden layers for
the acoustic view were all width 1024, and lay-
ers in the articulatory view all had width 512
units. L2 penalty constants of 0.0001 and
0.01 were placed on the acoustic and articula-
tory view networks, with 0.0005 on the label
view. The output layer dimension of each net-
work is set to 30 for DCCA and DGCCA. For
the 5-fold speaker-dependent experiments, we per-
formed a grid search for the network sizes in
{128, 256, 512, 1024} and covariance matrix reg-
ularization in {10−2, 10−4, 10−6, 10−8} for the
third view in each fold. We fix the hyperparame-
ters for these experiments optimizing the networks
with minibatch stochastic gradient descent with a
step size of 0.005, and a batch size of 2,000.

Results DGCCA improves upon both the lin-
ear multiview GCCA and the non-linear 2-view
DCCA for both the cross-speaker and speaker-

Table 1: KNN phoneme classification performance.

CROSS-SPEAKER SPEAKER-DEPENDENT

DEV/TEST REC DEV/TEST REC
METHOD ACC ERR ACC ERR

MFCC 48.9/49.3 66.3/66.2
DCCA 45.4/46.1 65.9/65.8
GCCA 49.6/50.2 40.7 69.5/69.8 40.4
DGCCA 53.8/54.2 35.9 72.6/72.3 20.5

dependent cross-validated tasks (Table 1). In addi-
tion to accuracy, we examine the reconstruction er-
ror (i.e. the objective in Equation 3) obtained from
the objective in GCCA and DGCCA. The sharp
improvement in reconstruction error shows that a
non-linear algorithm can better model the data.

In this experimental setup, DCCA under-
performs the baseline of simply running KNN on
the original acoustic view. Prior work consid-
ered the output of DCCA stacked on to the cen-
tral frame of the original acoustic view (39 dimen-
sions). This poor performance, in the absence of
original features, indicates that it was not able to
find a more informative projection than original
acoustic features based on correlation with the ar-
ticulatory view within the first 30 dimensions.

To highlight the improvements of DGCCA over
GCCA, Figure 2 presents a subset of the the confu-
sion matrices on speaker-dependent test data. We
observe large improvements in the classification of
D, F , K, SH , V and Y . For instance, DGCCA
rectifies the frequent misclassification of V as P ,
R and B by GCCA. In addition, commonly in-
correct classification of phonemes such as S and
T is corrected by DGCCA, which enables better
performance on other voiceless consonants such
as like F , K and SH . Vowels are classified with
almost equal accuracy by both the methods.

4.3 Hashtag & Friend Recommendation

Linear multiview techniques are effective at rec-
ommending hashtag and friends for Twitter users
(Benton et al., 2016). In this experiment, six views
of a Twitter user were constructed by applying
principal component analysis (PCA) to the bag-
of-words representations of (1) tweets posted by
the ego user, (2) other mentioned users, (3) their
friends, and (4) their followers, as well as one-
hot encodings of the local (5) friend and (6) fol-
lower networks. We learn and evaluate DGCCA
models on identical training, development, and
test sets as Benton et al. (2016), and evaluate

4



Table 2: Dev/test performance at Twitter friend and
hashtag recommendation tasks.

FRIEND HASHTAG
ALGORITHM P@1K R@1K P@1K R@1K

PCA[T+N] .445/.439 .149/.147 .011/.008 .312/.290
GCCA[T] .244/.249 .080/.081 .012/.009 .351/.326
GCCA[T+N] .271/.276 .088/.089 .012/.010 .359/.334
DGCCA[T+N] .297/.268 .099/.090 .013/.010 .385/.373

WGCCA[T] .269/.279 .089/.091 .012/.009 .357/.325
WGCCA[T+N] .376/.364 .123/.120 .013/.009 .360/.346

the DGCCA representations on macro precision
at 1,000 (P@1K) and recall at 1,000 (R@1K) for
the hashtag and friend recommendation tasks de-
scribed there.

We trained 40 different DGCCA model ar-
chitectures, each with identical network architec-
tures across views, where the width of the hid-
den and output layers, c1 and c2, for each view
are drawn uniformly from [10, 1000], and the aux-
iliary representation width r is drawn uniformly
from [10, c2].2 All networks used rectified linear
units in the hidden layer, and were optimized with
Adam (Kingma and Ba, 2014) for 200 epochs.
Networks were trained on 90% of 102,328 Twitter
users, with 10% of users used as a tuning set to es-
timate held-out reconstruction error for model se-
lection. We report development and test results for
the best performing model on the downstream task
development set. The learning rate was set to 10−4

with regularization of `1 = 10−2, `2 = 10−4.
Table 2 displays the precision and recall at

1000 recommendations of DGCCA compared to
PCA[T+N] (PCA applied to concatenation of text
and network view feature vectors), linear GCCA
applied to the four text views [T], and all text and
network views [T+N], along with a GCCA variant
with discriminative view weighting (WGCCA).
We learned PCA, GCCA, and WGCCA represen-
tations of width r ∈ [10, 1000], and select embed-
dings based on development set R@1K.

There are several points to note: First is that
DGCCA outperforms linear methods at hashtag
recommendation by a wide margin in terms of
recall. This is exciting because this task was
shown to benefit from incorporating more than
just two views from Twitter users. These results
suggest that a nonlinear transformation of the in-

2We only consider architectures with single-hidden-layer
networks identical across views so as to avoid a fishing ex-
pedition. If DGCCA is an appropriate method for learning
Twitter user embeddings, then it should require little archi-
tecture exploration.

put views can yield additional gains in perfor-
mance. In addition, WGCCA models sweep over
every possible weighting of views with weights in
{0, 0.25, 1.0}. The fact that DGCCA is able to
outperform WGCCA at hashtag recommendation
is encouraging, since WGCCA has much more
freedom to discard uninformative views. As noted
in Benton et al. (2016), only the friend network
view was useful for learning representations for
friend recommendation (corroborated by perfor-
mance of PCA applied to friend network view), so
it is unsurprising that DGCCA, when applied to all
views, cannot compete with WGCCA representa-
tions learned on the single useful friend network
view.

5 Discussion

There has also been strong work outside of CCA-
related methods to combine nonlinear representa-
tion and learning from multiple views. Kumar et
al. (2011) outlines two main approaches to learn
a joint representation from many views: either
by (1) explicitly maximizing similarity/correlation
between view pairs (Masci et al., 2014; Rajen-
dran et al., 2015) or by (2) alternately optimizing
a shared, “consensus” representation and view-
specific transformations (Kumar et al., 2011; Xi-
aowen, 2014; Sharma et al., 2012). Unlike the
first class of methods, the complexity of solving
DGCCA does not scale quadratically with num-
ber of views, nor does it require a privileged pivot
view (G is learned). Unlike methods that esti-
mate a “consensus” representation, DGCCA ad-
mits a globally optimal solution for both the view-
specific projections U1 . . . UJ , and the shared rep-
resentation G. Local optima arise in the DGCCA
objective only because we are also learning non-
linear transformations of the input views.

We present DGCCA, a method for non-linear
multiview representation learning from an arbi-
trary number of views. We show that DGCCA
clearly outperforms prior work in phoneme recog-
nition when using labels as a third view, and
can successfully exploit multiple views to learn
Twitter user representations useful for downstream
tasks, such as hashtag recommendation. To date,
CCA-style multiview learning techniques were ei-
ther restricted to learning representations from no
more than two views, or strictly linear transfor-
mations of the input views. This work overcomes
these limitations.
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Abstract

While most previous work has focused on dif-
ferent pretraining objectives and architectures
for transfer learning, we ask how to best adapt
the pretrained model to a given target task.
We focus on the two most common forms of
adaptation, feature extraction (where the pre-
trained weights are frozen), and directly fine-
tuning the pretrained model. Our empirical re-
sults across diverse NLP tasks with two state-
of-the-art models show that the relative perfor-
mance of fine-tuning vs. feature extraction de-
pends on the similarity of the pretraining and
target tasks. We explore possible explanations
for this finding and provide a set of adaptation
guidelines for the NLP practitioner.

1 Introduction

Sequential inductive transfer learning (Pan and
Yang, 2010; Ruder, 2019) consists of two stages:
pretraining, in which the model learns a general-
purpose representation of inputs, and adaptation,
in which the representation is transferred to a new
task. Most previous work in NLP has focused on
pretraining objectives for learning word or sen-
tence representations (Mikolov et al., 2013; Kiros
et al., 2015).

Few works, however, have focused on the adap-
tation phase. There are two main paradigms for
adaptation: feature extraction and fine-tuning. In
feature extraction ( ) the model’s weights are
‘frozen’ and the pretrained representations are
used in a downstream model similar to classic
feature-based approaches (Koehn et al., 2003). Al-
ternatively, a pretrained model’s parameters can be
unfrozen and fine-tuned ( ) on a new task (Dai
and Le, 2015). Both have benefits: enables use
of task-specific model architectures and may be

?The first two authors contributed equally.
†Sebastian is now affiliated with DeepMind.

Conditions Guidelines
Pretrain Adapt. Task

Any Any Add many task parameters

Any Any
Add minimal task parameters

Hyper-parameters

Any Any Seq. / clas. and have similar performance
ELMo Any Sent. pair use
BERT Any Sent. pair use

Table 1: This paper’s guidelines for using feature
extraction ( ) and fine-tuning ( ) with ELMo and
BERT. Seq.: sequence labeling. Clas.: classification.
Sent. pair: sentence pair tasks.

computationally cheaper as features only need to
be computed once. On the other hand, is conve-
nient as it may allow us to adapt a general-purpose
representation to many different tasks.

Gaining a better understanding of the adapta-
tion phase is key in making the most use out of
pretrained representations. To this end, we com-
pare two state-of-the-art pretrained models, ELMo
(Peters et al., 2018) and BERT (Devlin et al.,
2018) using both and across seven diverse
tasks including named entity recognition, natural
language inference (NLI), and paraphrase detec-
tion. We seek to characterize the conditions under
which one approach substantially outperforms the
other, and whether it is dependent on the pretrain-
ing objective or target task. We find that and

have comparable performance in most cases,
except when the source and target tasks are ei-
ther highly similar or highly dissimilar. We fur-
thermore shed light on the practical challenges of
adaptation and provide a set of guidelines to the
NLP practitioner, as summarized in Table 1.

2 Pretraining and Adaptation

In this work, we focus on pretraining tasks that
seek to induce universal representations suitable
for any downstream task.
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Word representations Pretrained word vectors
(Turian et al., 2010; Pennington et al., 2014) have
been an essential component in state-of-the-art
NLP systems. Word representations are often
fixed and fed into a task specific model ( ), al-
though can provide improvements (Kim, 2014).
Recently, contextual word representations learned
supervisedly (e.g., through MT; McCann et al.,
2017) or unsupervisedly (typically through lan-
guage modeling; Peters et al., 2018) have signif-
icantly improved over noncontextual vectors.

Sentence embedding methods Such methods
learn sentence representations via different pre-
training objectives such as previous/next sentence
prediction (Kiros et al., 2015; Logeswaran and
Lee, 2018), NLI (Conneau et al., 2017), or a com-
bination of objectives (Subramanian et al., 2018).
During the adaptation phase, the sentence repre-
sentation is typically provided as input to a linear
classifier ( ). LM pretraining with has also
been successfully applied to sentence-level tasks.
Howard and Ruder (2018, ULMFiT) propose tech-
niques for fine-tuning a LM, including triangu-
lar learning rate schedules and discriminative fine-
tuning, which uses lower learning rates for lower
layers. Radford et al. (2018) extend LM- to ad-
ditional sentence and sentence-pair tasks.

Masked LM and next-sentence prediction
BERT (Devlin et al., 2018) combines both word
and sentence representations (via masked LM and
next sentence prediction objectives) in a single
very large pretrained transformer (Vaswani et al.,
2017). It is adapted to both word and sentence
level tasks by with task-specific layers.

3 Experimental Setup

We compare ELMo and BERT as representatives
of the two best-performing pretraining settings.
This section provides an overview of our methods;
see the supplement for full details.

3.1 Target Tasks and Datasets

We evaluate on a diverse set of target tasks: named
entity recognition (NER), sentiment analysis (SA),
and three sentence pair tasks, natural language in-
ference (NLI), paraphrase detection (PD), and se-
mantic textual similarity (STS).

NER We use the CoNLL 2003 dataset (Sang and
Meulder, 2003), which provides token level an-

notations of newswire across four different entity
types (PER, LOC, ORG, MISC).

SA We use the binary version of the Stan-
ford Sentiment Treebank (SST-2; Socher et al.,
2013), providing sentiment labels (negative or
positive) for sentences of movie reviews.

NLI We use both the broad-domain MultiNLI
dataset (Williams et al., 2018) and Sentences
Involving Compositional Knowledge (SICK-E;
Marelli et al., 2014).

PD For paraphrase detection (i.e., decide
whether two sentences are semantically equiva-
lent), we use the Microsoft Research Paraphrase
Corpus (MRPC; Dolan and Brockett, 2005).

STS We employ the Semantic Textual Similarity
Benchmark (STS-B; Cer et al., 2017) and SICK-
R (Marelli et al., 2014). Both datasets provide a
similarity value from 1 to 5 for each sentence pair.

3.2 Adaptation
We now describe how we adapt ELMo and BERT
to these tasks. For we require a task-specific
architecture, while for we need a task-specific
output layer. For fair comparison, we conduct an
extensive hyper-parameter search for each task.

Feature extraction ( ) For both ELMo and
BERT, we extract contextual representations of the
words from all layers. During adaptation, we learn
a linear weighted combination of the layers (Pe-
ters et al., 2018) which is used as input to a task-
specific model. When extracting features, it is im-
portant to expose the internal layers as they typi-
cally encode the most transferable representations.
For SA, we employ a bi-attentive classification
network (McCann et al., 2017). For the sentence
pair tasks, we use the ESIM model (Chen et al.,
2017). For NER, we use a BiLSTM with a CRF
layer (Lafferty et al., 2001; Lample et al., 2016).

Fine-tuning ( ): ELMo We max-pool over the
LM states and add a softmax layer for text classi-
fication. For the sentence pair tasks, we compute
cross-sentence bi-attention between the LM states
(Chen et al., 2017), apply a pooling operation, then
add a softmax layer. For NER, we add a CRF layer
on top of the LSTM states.

Fine-tuning ( ): BERT We feed the sentence
representation into a softmax layer for text classi-
fication and sentence pair tasks following Devlin

8



Pretraining Adaptation NER SA Nat. lang. inference Semantic textual similarity
CoNLL 2003 SST-2 MNLI SICK-E SICK-R MRPC STS-B

Skip-thoughts - 81.8 62.9 - 86.6 75.8 71.8

ELMo
91.7 91.8 79.6 86.3 86.1 76.0 75.9
91.9 91.2 76.4 83.3 83.3 74.7 75.5

∆= - 0.2 -0.6 -3.2 -3.3 -2.8 -1.3 -0.4

BERT-base
92.2 93.0 84.6 84.8 86.4 78.1 82.9
92.4 93.5 84.6 85.8 88.7 84.8 87.1

∆= - 0.2 0.5 0.0 1.0 2.3 6.7 4.2

Table 2: Test set performance of feature extraction ( ) and fine-tuning ( ) approaches for ELMo and BERT-base
compared to one sentence embedding method. Settings that are good for are colored in red (∆= - > 1.0);
settings good for are colored in blue (∆= - < -1.0). Numbers for baseline methods are from respective
papers, except for SST-2, MNLI, and STS-B results, which are from Wang et al. (2018). BERT fine-tuning results
(except on SICK) are from Devlin et al. (2018). The metric varies across tasks (higher is always better): accuracy
for SST-2, SICK-E, and MRPC; matched accuracy for MultiNLI; Pearson correlation for STS-B and SICK-R; and
span F1 for CoNLL 2003. For CoNLL 2003, we report the mean with five seeds; standard deviation is about 0.2%.

et al. (2018). For NER, we extract the representa-
tion of the first word piece for each token and add
a softmax layer.

4 Results

We show results in Table 2 comparing ELMo
and BERT for both and approaches across
the seven tasks against with Skip-thoughts (Kiros
et al., 2015), which employs a next-sentence pre-
diction objective similar to BERT.

Both ELMo and BERT outperform the sentence
embedding method significantly, except on the se-
mantic textual similarity tasks (STS) where Skip-
thoughts is similar to ELMo. The overall perfor-
mance of and shows small differences except
for a few notable cases. For ELMo, we find the
largest differences for sentence pair tasks where

consistently outperforms . For BERT, we ob-
tain nearly the opposite result: significantly out-
performs on all STS tasks, with much smaller
differences for the others.

Discussion Past work in NLP (Mou et al., 2016)
showed that similar pretraining tasks transfer bet-
ter.1 In computer vision (CV), Yosinski et al.
(2014) similarly found that the transferability of
features decreases as the distance between the pre-
training and target task increases. In this vein,
Skip-thoughts—and Quick-thoughts (Logeswaran
and Lee, 2018), which has similar performance—
which use a next-sentence prediction objective

1Mou et al. (2016), however, only investigate transfer be-
tween classification tasks (NLI→ SICK-E/MRPC).

similar to BERT, perform particularly well on STS
tasks, indicating a close alignment between the
pretraining and target task. This strong alignment
also seems to be the reason for BERT’s strong rel-
ative performance on these tasks.

In CV, generally outperforms when trans-
ferring from ImageNet supervised classification
pretraining to other classification tasks (Kornblith
et al., 2018). Recent results suggest is less use-
ful for more distant target tasks such as semantic
segmentation (He et al., 2018). This is in line with
our results, which show strong performance with

between closely aligned tasks (next-sentence
prediction in BERT and STS tasks) and poor per-
formance for more distant tasks (LM in ELMo and
sentence pair tasks). Confounding factors may be
the suitability of the inductive bias of the model
architecture for sentence pair tasks and ’s poten-
tially increased flexibility due to a larger number
of parameters, which we will both analyze next.

5 Analyses

Modelling pairwise interactions LSTMs con-
sider each token sequentially, while Transform-
ers can relate each token to every other in each
layer (Vaswani et al., 2017). This might facilitate

with Transformers on sentence pair tasks, on
which ELMo- performs comparatively poorly.
We additionally compare different ways of en-
coding the sentence pair with ELMo and BERT.
For ELMo, we compare encoding with and with-
out cross-sentence bi-attention in Table 3. When
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SICK-E SICK-R STS-B MRPC

ELMo- +bi-attn. 83.8 84.0 80.2 77.0
w/o bi-attn. 70.9 51.8 38.5 72.3

Table 3: Comparison of ELMO- cross-sentence em-
bedding methods on dev. sets of sentence pair tasks.

SICK-E SICK-R STS-B MRPC

BERT- , joint enc. 85.5 86.4 88.1 83.3
separate encoding 81.2 86.8 86.8 81.4

Table 4: Comparison of BERT- cross-sentence em-
bedding methods on dev. sets of sentence pair tasks.

adapting the ELMo LSTM to a sentence pair task,
modeling the sentence interactions by fine-tuning
through the bi-attention mechanism provides the
best performance.2 This provides further evidence
that the LSTM has difficulty modeling the pair-
wise interactions during sequential processing—
in contrast to a Transformer LM that can be fine-
tuned in this manner (Radford et al., 2018).

For BERT- , we compare joint encoding of the
sentence pair with encoding the sentences sepa-
rately in Table 4. The latter reduces performance,
which shows that BERT representations encode
cross-sentence relationships and are therefore par-
ticularly well-suited for sentence pair tasks.

Impact of additional parameters We evaluate
whether adding parameters is useful for both adap-
tation settings on NER. We add a CRF layer (as
used in ) and a BiLSTM with a CRF layer (as
used in ) to both and show results in Table 5. We
find that additional parameters are key for , but
hurt performance with .3 In addition, requires
gradual unfreezing (Howard and Ruder, 2018) to
match performance of feature extraction.

ELMo fine-tuning We found fine-tuning the
ELMo LSTM to be initially difficult and re-
quired careful hyper-parameter tuning. Once
tuned for one task, other tasks have similar hyper-
parameters. Our best models used slanted trian-
gular learning rates and discriminative fine-tuning
(Howard and Ruder, 2018) and in some cases
gradual unfreezing.

2This is similar to text classification tasks, where we find
max-pooling to outperform using the final hidden state, simi-
lar to (Howard and Ruder, 2018).

3 in fact optimizes a larger number of parameters than
, so a reduced expressiveness does not explain why it un-

derperforms on dissimilar settings.

Model configuration F1

+ BiLSTM + CRF 95.5
+ CRF 91.9

+ CRF + gradual unfreeze 95.5
+ BiLSTM + CRF + gradual unfreeze 95.2
+ CRF 95.1

Table 5: Comparison of CoNLL 2003 NER develop-
ment set performance (F1) for ELMo for both feature
extraction and fine-tuning. All results averaged over
five random seeds.

TE GO TR FI SL

BERT- 84.4 86.7 86.1 84.5 80.9
∆= - -1.1 -0.2 -0.6 0.4 -0.6
JS div 0.21 0.18 0.14 0.09 0.09

Table 6: Accuracy of feature extraction ( ) and dif-
ference compared to fine-tuning ( ) with BERT-base
trained on training data of different MNLI domains and
evaluated on corresponding dev sets. TE: telephone. FI:
fiction. TR: travel. GO: government. SL: slate.

Impact of Target Domain Pretrained language
model representations are intended to be univer-
sal. However, the target domain might still im-
pact the adaptation performance. We calculate the
Jensen-Shannon divergence based on term distri-
butions (Ruder and Plank, 2017) between the do-
mains used to train BERT (books and Wikipedia)
and each MNLI domain. We show results in Ta-
ble 6. We find no significant correlation. At least
for this task, the distance of the source and target
domains does not seem to have a major impact on
the adaptation performance.

Representations at different layers In addi-
tion, we are interested how the information in the
different layers of the models develops over the
course of fine-tuning. We measure this informa-
tion in two ways: a) with diagnostic classifiers
(Adi et al., 2017); and b) with mutual information
(MI; Noshad et al., 2018). Both methods allow
us to associate the hidden activations of our model
with a linguistic property. In both cases, we use
the mean of the hidden activations of BERT-base4

of each token / word piece of the sequence(s) as

4We show results for BERT as they are more inspectable
due to the model having more layers. Trends for ELMo are
similar.
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the representation.5

With diagnostic classifiers, for each example,
we extract the pretrained and fine-tuned represen-
tation at each layer as features. We use these
features as input to train a logistic regression
model (linear regression for STS-B, which has
real-valued outputs) on the training data of two
single sentence (CoLA6 and SST-2) and two pair
sentence tasks (MRPC and STS-B). We show its
performance on the corresponding dev sets in Fig-
ure 1.

Figure 1: Performance of diagnostic classifiers trained
on pretrained and fine-tuned BERT representations at
different layers on the dev sets of the corresponding
tasks.

For all tasks, diagnostic classifier performance
generally is higher in higher layers of the model.
Fine-tuning improves the performance of the diag-
nostic classifier at every layer. For the single sen-
tence classification tasks CoLA and SST-2, pre-
trained performance increases gradually until the
last layers. In contrast, for the sentence pair tasks
MRPC and STS-B performance is mostly flat after
the fourth layer. Relevant information for sentence
pair tasks thus does not seem to be concentrated
primarily in the upper layers of pretrained repre-
sentations, which could explain why fine-tuning is
particularly useful in these scenarios.

Computing the mutual information with regard
to representations of deep neural networks has

5We observed similar results when using max-pooling or
the representation of the first token.

6The Corpus of Linguistic Acceptability (CoLA; Warstadt
et al., 2018) consists of examples of expert English sentence
acceptability judgments drawn from 22 books and journal ar-
ticles on linguistic theory. It uses the Matthews correlation
coefficient (Matthews, 1975) for evaluation and is available
at: nyu-mll.github.io/CoLA

only become feasible recently with the develop-
ment of more sophisticated MI estimators. In our
experiments, we use the state-of-the-art ensem-
ble dependency graph estimator (EDGE; Noshad
et al., 2018) with default hyper-parameter values.
As a sanity check, we compute the MI between
hidden activations and random labels and random
representations and random labels, which yields 0
in every case as we would expect.7

We show the mutual information I(H;Y ) be-
tween the pretrained and fine-tuned mean hidden
activations H at each layer of BERT and the out-
put labels Y on the dev sets of CoLA, SST-2, and
MRPC in Figure 2.

Figure 2: The mutual information between fine-tuned
and pretrained mean BERT representations at different
layers and the labels on the dev set of the corresponding
tasks.

The MI between pretrained representations and
labels is close to 0 across all tasks and layers, ex-
cept for SST. In contrast, fine-tuned representa-
tions display much higher MI values. The MI for
fine-tuned representations rises gradually through
the intermediate and last layers for the sentence
pair task MRPC, while for the single sentence
classification tasks, the MI rises sharply in the last
layers. Similar to our findings with diagnostic
classifiers, knowledge for single sentence classifi-
cation tasks thus seems mostly concentrated in the
last layers, while pair sentence classification tasks
gradually build up information in the intermediate
and last layers of the model.

6 Conclusion

We have empirically analyzed fine-tuning and fea-
ture extraction approaches across diverse datasets,
finding that the relative performance depends on
the similarity of the pretraining and target tasks.
We have explored possible explanations and pro-
vided practical recommendations for adapting pre-
trained representations to NLP practicioners.

7For the same settings, we obtain non-zero values with
earlier estimators (Saxe et al., 2018), which seem to be less
reliable for higher numbers of dimensions.
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A Experimental Details

For fair comparison, all experiments include ex-
tensive hyper-parameter tuning. We tuned the
learning rate, dropout ratio, weight decay and
number of training epochs. In addition, the fine-
tuning experiments also examined the impact of
triangular learning rate schedules, gradual un-
freezing, and discriminative learning rates. Hyper-
parameters were tuned on the development sets
and the best setting evaluated on the test sets.

All models were optimized with the Adam op-
timizer (Kingma and Ba, 2015) with weight decay
fix (Loshchilov and Hutter, 2017).

We used the publicly available pretrained
ELMo8 and BERT9 models in all experiments.
For ELMo, we used the original two layer bidi-
rectional LM. In the case of BERT, we used the
BERT-base model, a 12 layer bidirectional trans-
former. We used the English uncased model for
all tasks except for NER which used the English
cased model.

A.1 Feature Extraction
To isolate the effects of fine-tuning contextual
word representations, all feature based models
only include one type of word representation
(ELMo or BERT) and do not include any other
pretrained word representations.

For all tasks, all layers of pretrained represen-
tations were weighted together with learned scalar
parameters following Peters et al. (2018).

NER For the NER task, we use a two layer bidi-
rectional LSTM in all experiments. For ELMo, the
output layer is a CRF, similar to a state-of-the-art
NER system (Lample et al., 2016). Feature ex-
traction for ELMo treated each sentence indepen-
dently.

In the case of BERT, the output layer is a soft-
max to be consistent with the fine-tuned experi-
ments presented in Devlin et al. (2018). In ad-
dition, as in Devlin et al. (2018), we used doc-
ument context to extract word piece representa-
tions. When composing multiple word pieces into
a single word representation, we found it benefi-
cial to run the biLSTM layers over all word pieces
before taking the LSTM states of the first word
piece in each word. We experimented with other
pooling operations to combine word pieces into a

8https://allennlp.org/elmo
9https://github.com/google-research/

bert

13



single word representation but they did not provide
additional gains.

SA We used the implementation of the bi-
attentive classification network in AllenNLP
(Gardner et al., 2017) with default hyper-
parameters, except for tuning those noted above.
As in the fine-tuning experiments for SST-2, we
used all available annotations during training, in-
cluding those of sub-trees. Evaluation on the de-
velopment and test sets used full sentences.

Sentence pair tasks When extracting features
from ELMo, each sentence was handled sepa-
rately. For BERT, we extracted features for both
sentences jointly to be consistent with the pretrain-
ing procedure. As reported in Section 5 this im-
proved performance over extracting features for
each sentence separately.

Our model is the ESIM model (Chen et al.,
2017), modified as needed to support regression
tasks in addition to classification. We used de-
fault hyper-parameters except for those described
above.

A.2 Fine-tuning
When fine-tuning ELMo, we found it beneficial
to use discriminative learning rates (Howard and
Ruder, 2018) where the learning rate decreased by
0.4× in each layer (so that the learning rate for the
second to last layer is 0.4× the learning rate in the
top layer). In addition, for SST-2 and NER, we
also found it beneficial to gradually unfreeze the
weights starting with the top layer. In this setting,
in each epoch one additional layer of weights is
unfrozen until all weights are training. These set-
tings were chosen by tuning development set per-
formance.

For fine-tuning BERT, we used the default
learning rate schedule (Devlin et al., 2018) that is
similar to the schedule used by Howard and Ruder
(2018).

SA We considered several pooling operations
for composing the ELMo LSTM states into a vec-
tor for prediction including max pooling, average
pooling and taking the first/last states. Max pool-
ing performed slightly better than average pooling
on the development set.

Sentence pair tasks Our bi-attentive fine-tuning
mechanism is similar to the the attention mech-
anism in the feature based ESIM model. To ap-
ply it, we first computed the bi-attention between

all words in both sentences, then applied the same
“enhanced” pooling operation as in (Chen et al.,
2017) before predicting with a softmax. Note that
this attention mechanism and pooling operation
does not add any additional parameters to the net-
work.

14



Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 15–26
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

Generative Adversarial Networks for text using word2vec intermediaries
Akshay Budhkar1, 2, 4, Krishnapriya Vishnubhotla1, Safwan Hossain1, 2 and Frank Rudzicz1, 2, 3, 5

1Department of Computer Science, University of Toronto
{abudhkar, vkpriya, frank}@cs.toronto.edu

2Vector Institute
safwan.hossain@mail.utoronto.ca

3St Michael’s Hospital
4Georgian Partners

5Surgical Safety Technologies Inc.

Abstract

Generative adversarial networks (GANs) have
shown considerable success, especially in the
realistic generation of images. In this work,
we apply similar techniques for the generation
of text. We propose a novel approach to han-
dle the discrete nature of text, during training,
using word embeddings. Our method is ag-
nostic to vocabulary size and achieves compet-
itive results relative to methods with various
discrete gradient estimators.

1 Introduction

Natural Language Generation (NLG) is often re-
garded as one of the most challenging tasks in
computation (Murty and Kabadi, 1987). It in-
volves training a model to do language genera-
tion for a series of abstract concepts, represented
either in some logical form or as a knowledge
base. Goodfellow introduced generative adver-
sarial networks (GANs) (Goodfellow et al., 2014)
as a method of generating synthetic, continuous
data with realistic attributes. The model includes a
discriminator network (D), responsible for distin-
guishing between the real and the generated sam-
ples, and a generator network (G), responsible for
generating realistic samples with the goal of fool-
ing the D. This setup leads to a minimax game
where we maximize the value function with re-
spect toD, and minimize it with respect toG. The
ideal optimal solution is the complete replication
of the real distributions of data by the generated
distribution.

GANs, in this original setup, often suffer from
the problem of mode collapse - where the G man-
ages to find a few modes of data that resem-
ble real data, using them consistently to fool the
D. Workarounds for this include updating the
loss function to incorporate an element of multi-
diversity. An optimal D would provide G with

the information to improve, however, if at the cur-
rent stage of training it is not doing that yet, the
gradient of G vanishes. Additionally, with this
loss function, there is no correlation between the
metric and the generation quality, and the most
common workaround is to generate targets across
epochs and then measure the generation quality,
which can be an expensive process.

W-GAN (Arjovsky et al., 2017) rectifies these
issues with its updated loss. Wasserstein distance
is the minimum cost of transporting mass in con-
verting data from distribution Pr to Pg. This loss
forces the GAN to perform in a min-max, rather
than a max-min, a desirable behavior as stated in
(Goodfellow, 2016), potentially mitigating mode-
collapse problems. The loss function is given by:

Lcritic = min
G

max
D∈D

(Ex∼pr(x)[D(x)]

−Ex̃∼pg(x)[D(x̃)])
(1)

where D is the set of 1-Lipschitz functions and
Pg is the model distribution implicitly defined by
x̃ = G(z), z ∼ p(z). A differentiable function is
1-Lipschtiz iff it has gradients with norm at most
1 everywhere. Under an optimal D minimizing
the value function with respect to the generator pa-
rameters minimizes theW(pr, pg), whereW is the
Wasserstein distance, as discussed in (Vallender,
1974). To enforce the Lipschitz constraint, the au-
thors propose clipping the weights of the gradient
within a compact space [−c, c].

(Gulrajani et al., 2017) show that even though
this setup leads to more stable training compared
to the original GAN loss function, the architec-
ture suffers from exploding and vanishing gradient
problems. They introduce the concept of gradient
penalty as an alternative way to enforce the Lip-
schitz constraint, by penalizing the gradient norm
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directly in the loss. The loss function is given by:

L = Lcritic+λEx̂∼p(x̂)[(||∇x̂D(x̂)||2−1)2] (2)

where x̂ are random samples drawn from Px,
and Lcritic is the loss defined in Equation 1.

Empirical results of GANs over the past year or
so have been impressive. GANs have gotten state-
of-the-art image-generation results on datasets like
ImageNet (Brock et al., 2018) and LSUN (Rad-
ford et al., 2015). Such GANs are fully differen-
tiable and allow for back-propagation of gradients
fromD through the samples generated by G. How-
ever, if the data is discrete, as, in the case of text,
the gradient cannot be propagated back from D
to G, without some approximation. Workarounds
to this problem include techniques from reinforce-
ment learning (RL), such as policy gradients to
choose a discrete entity and reparameterization to
represent the discrete quantity in terms of an ap-
proximated continuous function (Williams, 1992;
Jang et al., 2016).

1.1 Techniques for GANs for text

SeqGAN (Yu et al., 2017) uses policy gradient
techniques from RL to approximate gradient from
discrete G outputs, and applied MC rollouts dur-
ing training to obtain a loss signal for each word in
the corpus. MaliGAN (Che et al., 2017) rescales
the reward to control for the vanishing gradient
problem faced by SeqGAN. RankGAN (Lin et al.,
2017) replaces D with an adversarial ranker and
minimizes pair-wise ranking loss to get better con-
vergence, however, is more expensive than other
methods due to the extra sampling from the orig-
inal data. (Kusner and Hernández-Lobato, 2016)
used the Gumbel-softmax approximation of the
discrete one-hot encoded output of the G, and
showed that the model learns rules of a context-
free grammar from training samples. (Rajeswar
et al., 2017), the state of the art in 2017, forced the
GAN to operate on continuous quantities by ap-
proximating the one-hot output tokens with a soft-
max distribution layer at the end of theG network.

MaskGAN (Fedus et al., 2018) uses policy
gradient with REINFORCE estimator (Williams,
1992) to train the model to predict a word based
on its context, and show that for the specific
blank-filling task, their model outperforms maxi-
mum likelihood model using the perplexity met-
ric. LeakGAN (Guo et al., 2018) allows for long

sentence generation by leaking high-level infor-
mation from D to G, and generates a latent rep-
resentation from the features of the already gen-
erated words, to aid in the next word generation.
TextGAN (Zhang et al., 2017) adds an element of
diversity to the original GAN loss by employing
the Maximum Mean Discrepancy objective to al-
leviate mode collapse.

In the latter half of 2018, (Zhu et al., 2018) in-
troduced Texygen, a benchmarking platform for
natural language generation, while introducing
standard metrics apt for this task. (Lu et al., 2018)
surveys all these new methods along with other
baselines, and documents model performance on
standard corpus like EMNLP2017 WMT News1

and Image COCO2.

2 Motivation

2.1 Problems with the Softmax Function

The final layer of nearly all existing language gen-
eration models is the softmax function. It is usu-
ally the slowest to compute, leaves a large memory
footprint and can lead to significant speedups if re-
placed by approximate continuous outputs (Kumar
and Tsvetkov, 2018). Given this bottleneck, mod-
els usually limit the vocabulary size to a few thou-
sand and use an unknown token (unk) for the rare
words. Any change in the allowed vocabulary size
also means that the researcher needs to modify the
existing model architecture.

Our work breaks this bottleneck by having our
G produce a sequence (or stack) of continuous dis-
tributed word vectors, with n dimensions, where
n << V and V is the vocabulary size. The ex-
pectation is that the model will output words in a
semantic space, that is produced words would ei-
ther be correct or close synonyms (Mikolov et al.,
2013; Kumar and Tsvetkov, 2018), while having a
smaller memory footprint and faster training and
inference procedures.

2.2 GAN2vec

In this work, we propose GAN2vec - GANs
that generate real-valued word2vec-like vectors
(as opposed to discrete one-hot encoded outputs).
While this work mainly focuses specifically on
word2vec-based representation, it can be eas-
ily extended to other embedding techniques like
GloVe and fastText.

1http://www.statmt.org/wmt17/
2http://cocodataset.org/
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Expecting a neural network to generate text is,
intuitively, expecting it to learn all the nuances of
natural language, including the rules of grammar,
context, coherent sentences, and so on. Word2vec
has shown to capture parts of these subtleties by
capturing the inherent semantic meaning of the
words, and this is shown by the empirical results
in the original paper (Mikolov et al., 2013) and
with theoretical justifications by (Ethayarajh et al.,
2018). GAN2vec breaks the problem of genera-
tion down into two steps, the first is the word2vec
mapping, with the following network expected to
address the other aspects of sentence generation.
It also allows the model designers to swap out
word2vec for a different type of word represen-
tation that is best suited for the specific language
task at hand.

As a manifestation of the similar-context words
getting grouped in word embedding space - we ex-
pect GAN2vec to have synonymic variety in the
generation of sentences. Generating real-valued
word vectors also allows the G architecture to
be vocabulary-agnostic, as modifying the training
data would involve just re-training the word em-
bedding with more data. While this would involve
re-training the weights of the GAN network, the
initial architectural choices could remain consis-
tent through this process. Finally, as discussed
in Section 2.1, we expect a speed-up and smaller
memory footprint by adapting this approach.

All the significant advances in the adaptation of
GANs since its introduction in 2016, has been fo-
cused in the field of images. We have got to the
point, where sometimes GAN architectures have
managed to generate images even better than real
images, as in the case of BigGAN (Brock et al.,
2018). While there have been breakthroughs in
working with text too, the rate of improvement is
no-where close to the success we have had with
images. GAN2vec attempts to bridge this gap by
providing a framework to swap out image repre-
sentations with word2vec representations.

3 The Architecture

Random normal noise is used as an input to the G
which generates a sequence of word2vec vectors.
We train the word2vec model on a real text corpus
and generate a stack word vector sequences from
the model. The generated and the real samples
are then sent to D, to identify as real or synthetic.
The generated word vectors are converted to text at

regular intervals during training and during infer-
ence for human interpretation. A nearest-neighbor
approach based on cosine similarity is used to find
the closest word to the generated embedding in the
vector space.

4 The Algorithm

The complete GAN2vec flow is presented in Al-
gorithm 1.

Algorithm 1 GAN2vec Framework
1: Train a word2vec model, e, on the train corpus

2: Transform text to a stack of word2vec vectors
using e

3: Pre-train D for t iterations on real data
4: for k iterations do
5: Send minibatch of real data to D
6: G(z) = Sample random normal z and feed

to G
7: Send minibatch of G generated data, G(z),

to D
8: Update D using gradient descent
9: Update G using gradient ascent

10: end for
11: G(z) = Sample random normal z and feed to

G
12: wgenerated = argmin

w
{d(ê, e(w))}, for every

ê in G(z) and every w in the corpus

4.1 Conditional GAN2vec

We modify GAN2vec to measure the adaptabil-
ity of GAN2vec to conditions provided a priori,
as seen in (Mirza and Osindero, 2014). This
change can include many kinds of conditions like
positive/negative, question/statement or demen-
tia/controls, allowing for the ability to analyze ex-
amples from various classes on the fly during in-
ference. Both the G (and D) architectures get
passed the condition at hand as an input, and the
goal of G now is to generate a realistic sample
given the specific condition.

5 Environmental Setup

All the experiments are run using Pytorch (Paszke
et al., 2017). Word2vec training is done using the
gensim library (Řehůřek and Sojka, 2010). Unless
specified otherwise, we use the default parameters
for all the components of these libraries, and all
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Text Generation for Human Interpretation
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Figure 1: Structure of the GAN2vec model. Random normal noise is given as input to the generator networkG. The
discriminator network D is responsible for determining whether a sample originated from G or from the training
set. At inference time, we use a nearest-neighbor approach to convert the output from G into human-readable text.

our models are trained for 100 epochs. The word
embedding dimensions are set to 64. The learning
rate for the ADAM optimizers for D and G are
set to 0.0001, with the exponential decay rates for
the first and second moments set to 0.5 and 0.999
respectively.

All our Ds take the word2vec-transformed vec-
tors as an input and apply two 2-D convolutions,
followed by a fully connected layer to return a
single value. The dimensions of the second 2-D
convolution are the only things varied to address
the different input dimensions. Similarly, our Gs
take a random normal noise of size 100 and trans-
form it to the desired output by passing it through
a fully-connected layer, and two 2-D fractionally-
strided convolution layers. Again, the dimensions
of the second fractionally-strided convolution are
the only variables to obtain different output dimen-
sions.

Normalizing word vectors after training them
has no significant effect on the performance of
GAN2vec, and all the results that we present do
not carry out this step. Keeping in punctuation
helped improve performance, as expected, and
none of the experiments filter them out.

To facilitate stable GAN training, we make
the following modifications, covered by (Chintala
et al., 2016), by running a few preliminary tests on

a smaller sample of our dataset:

• Use LeakyRELU instead of RELU

• Send generated and real mini-batches to D in
separate batches

• Use label smoothing by setting the target la-
bels to 0.9 and 0.1 instead of 1 and 0 for real
and fake samples respectively (for most of
our experiments).

6 Metrics

6.1 BLEU

BLEU (Papineni et al., 2002) originated as a
way to measure the quality of machine transla-
tion given certain ground truth. Many text gen-
eration papers use this as a metric to compare the
quality of the generated samples to the target cor-
pus. A higher n-gram coverage will yield a higher
BLEU score, with the score reaching a 100% if
all the generated n-grams are present in the cor-
pus. The two potential flaws with this metric are:
1) It does not take into account the diversity of
the text generation, this leads to a situation where
a mode-collapsing G that produces the same one
sentence from the corpus gets a score of 100%. 2)
It penalizes the generation of grammatically co-
herent sentences with novel n-grams, just because
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they are absent from the original corpus. Despite
these problems, we use BLEU to be consistent
with other GANs for text papers. We also present
generated samples for the sake of qualitative eval-
uation by the reader.

6.2 Self-BLEU
Self-BLEU is introduced as a metric to measure
the diversity of the generated sentences. It does
a corpus-level BLEU on a set of generated sen-
tences, and reports the average BLEU as a metric
for a given model. A lower self-BLEU implies a
higher diversity in the generated sentences, and ac-
cordingly a lower chance that the model has mode
collapsed.

It is not clear from (Zhu et al., 2018)’s work
on how many sentences Texygen generates to cal-
culate Self-BLEU. For purposes of GAN2vec’s
results, we produce 1000 sentences, and for ev-
ery sentence do a corpus-level BLEU on remain-
ing 999 sentences. Our results report the average
BLEU across all the outputs.

7 Chinese Poetry Dataset

The Chinese Poetry dataset, introduced by (Zhang
and Lapata, 2014) presents simple 4-line poems in
Chinese with a length of 5 or 7 tokens (henceforth
referred to Poem 5 and Poem 7 respectively). Fol-
lowing previous work by (Rajeswar et al., 2017)
and (Yu et al., 2017), we treat every line as a sep-
arate data point. We modify the Poem 5 dataset to
add start and end of tokens, to ensure the model
captures (at least) that pattern through the corpus
(given our lack of Chinese knowledge). This setup
allows us to use identical architectures for both the
Poem 5 and Poem 7 datasets. We also modify the
GAN2vec loss function with the objective in Eq.
2, and report the results below.

Rajeswar
et al.

GAN2vec GAN2vec
(wGAN)

Poem
5

– (train) 37.90% (train) 53.5% (train)

87.80%
(test)

22.50% (test) 25.78% (test)

Poem
7

– (train) 30.14% (train) 66.45% (train)

65.60%
(test)

10.20% (test) 22.07% (test)

Table 1: Chinese Poetry BLEU-2 scores.

The better performance of the GAN2vec model
with the wGAN objective is in-line with the im-

age results in Gulrajani et al. (2017)’s work. We
were not able to replicate (Rajeswar et al., 2017)’s
model on the Chinese Poetry dataset to get the re-
ported results on the test set. This conclusion is
in-line with our expectation of lower performance
on the test set, given the small overlap in the bi-
gram coverage between the provided train and test
sets. (Lu et al., 2018) also point out that this work
is unreliable, and that their replicated model suf-
fered from severe mode-collapse. On 1000 gener-
ated sentences of the Poem-5 dataset, our model
has a self BLEU-2 of 66.08% and self BLEU-3 of
35.29%, thereby showing that our model does not
mode collapse.

8 CMU-SE Dataset

CMU-SE3 is a pre-processed collections of sim-
ple English sentences, consisting of 44,016 sen-
tences and a vocabulary of 3,122-word types. For
purposes of our experiments here, we limit the
number of sentences to 7, chosen empirically to
capture a significant share of the examples. For
the sake of simplicity in these experiments, for
the real corpus, sentences with fewer than seven
words are ignored, and those with more than seven
words are cut-off at the seventh word.

Table 1 presents sentences generated by the
original GAN2vec model. Appendix A.2 includes
additional examples. While this is a small sub-
set of randomly sampled examples, on a relatively
simple dataset, the text quality appears competi-
tive to the work of (Rajeswar et al., 2017) on this
corpus.

Rajeswar et al. (2017)
<s> will you have two moment ? </s>
<s> how is the another headache ? </s>
<s> what s in the friday food ? ? </s>
<s> i d like to fax a newspaper . </s>
GAN2vec
<s> i dropped my camera . </s>
<s> i ’d like to transfer it
<s> i ’ll take that car ,
<s> prepare whisky and coffee , please

Table 2: Example sentences generated by the origi-
nal GAN2vec. We report example sentences from Ra-
jeswar et al. (2017) and from our GAN2vec model on
CMU-SE.

3https://github.com/clab/sp2016.
11-731/tree/master/hw4/data
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8.1 Conditional GAN2vec

We split the CMU-SE dataset into questions and
sentences, checking for the presence of a question
mark. We modify the original GAN2vec, as seen
in Section A.1, to now include these labels. Our
conditional GANs learn to generate mainly coher-
ent sentences on the CMU-SE dataset, as seen in
Table 3.

Figure 2: The minimax loss of D and G, with increasing
iterations for the GAN2vec model (top) and the condi-
tional GAN2vec (bottom).

Figure 2 shows the loss graphs for our
GAN2vec and conditional GAN2vec trained for
∼300 epochs. As seen above, the conditional
GAN2vec model generates relatively atypical sen-
tences. This is supported by the second loss curve
in Figure 2. The G loss follows a progression sim-
ilar to the normal GAN2vec case, but the loss is
about 16% more through the 100 epochs.

8.2 Hyperparameter Variation Study

We study the effects of different initial hyperpa-
rameters for GAN2vec by reporting the results in
Table 4. All the experiments were run ten times,
and we report the best scores for every config-
uration. It must be noted that for conditional
GAN2vec training for this experiment, we ran-
domly sample points from the CMU-SE corpus to
enforce a 50-50 split across the two labels (ques-
tion and sentence).

The overall performance of most of the models
is respectable, with all models generating gram-

matically coherent sentences. GAN2vec with
wGAN objective outperforms original GAN2vec,
and is inline with the results of (Gulrajani et al.,
2017) and our results in Section 7. Sense2vec does
not have a significant improvement over the orig-
inal word2vec representations. In agreement with
(Goodfellow, 2016), providing labels in the condi-
tional variant leads to better performance.

8.3 Word2vec cosine similarity

Figure 3: Cosine similarities of the first, third, fourth,
and seventh words to the closest words from sen-
tences generated by GAN2vec trained on the CMU-SE
dataset.

During training, we map our generated
word2vec vectors to the closest words in the
embedding space and measure the point-wise
cosine similarity of the generated vector and the
closest neighbour’s vector. Figure 3 shows these
scores for the first, third, fourth and seventh word
of the 7-word generated sentences on the CMU-
SE dataset for about 300 epochs. The model
immediately learns that it needs to start a sentence
with <s> and gets a cosine similarity of around
1. For the other words in that sentence, the model
tends to get better at generating word vectors that
are close to their real-valued counterparts of the
nearest neighbours. It seems as if the words close
to the start of the sentence follow this trend more
strongly (as seen with words 1 and 3) and it is
relatively weaker for the last word of the sentence.

9 Coco Image Captions Dataset

The Coco Dataset is used to train and generate
synthetic data as a common dataset for all the
best-performing models over the last two years.
In Texygen, the authors set the sentence length to
20. They train an oracle that generates 20,000 sen-
tences, with one half used as the training set and
the rest as the test set. All the models in this bench-
mark are trained for 180 epochs.
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Questions Sentences
<s> can i get you want him <s> i bring your sweet inexpensive beer
<s> where ’s the hotel ? <s> they will stop your ship at
<s> what is the fare ? </s> <s> i had a pocket . </s>
<s> could you buy the timetable ? <s> it ’s ten at detroit western

Table 3: Examples of sentences generated by the conditional GAN. We report examples of sentences with our
model conditioned on sentence type, i.e., question or sentence.

Architecture Conditional Vector Type Loss function BLEU-2 BLEU-3
R.1 No Sense2vec Original 0.743 0.41
R.1 No Sense2vec wgan 0.7933 0.4728
R.1 No Word2Vec wgan 0.74 0.43
C.1 Yes word2vec Original (Real) 0.717 0.412
C.1 Yes word2vec Original 0.743 0.4927
C.1 Yes word2vec wgan 0.7995 0.5168
C.1 Yes word2vec wgan 0.821 0.51
C.2 Yes word2vec wgan 0.8053 0.499

Table 4: Performance of different models on the CMU-SE train dataset. R.1 is the original GAN2vec, C.1 is R.1
modified with addition of labels, C.2 adds batch normalization on the CNN layer of G. Original (Real) sets the
real label to 0.9, the rest use 1.
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Figure 4: Distribution of sentence lengths in the Coco
dataset. Most of the captions have less than 20 words,
the cut-off set by Texygen.

Figure 4 shows the distribution of the sen-
tence lengths in this corpus. For purposes of
studying the effects of longer training sentences
on GAN2vec, we set the sentence lengths to 7,
10 and 20 (with the respective models labeled
as GAN2vec-7, GAN2vec-10, GAN2vec-20 go-
ing forward). Any sentence longer than the pre-
defined sentence length is cut off to include only
the initial words. Sentences shorter than this
length are padded with an end of sentence char-
acter to fill up the remaining words (we use a
comma (,) for purposes of our experiments as all
the sentences in the corpus end with either a full
stop or a word). We tokenize the sentences us-

ing NLTK’s word tokenizer4 which uses regular
expressions to tokenize text as in the Penn Tree-
bank corpus5. We also report the results of a naive
split at space approach for the GAN2vec-20 ar-
chitecture (GAN2vec-20-a), to compare different
ways of tokenizing the corpus. We only use the
objective from Equation 2, given its superior per-
formance to original GAN2vec, as seen in the pre-
vious sections.

The results are summarized in the tables below:

Model BLEU-2 BLEU-3
LeakGAN 0.926 0.816
SeqGAN 0.917 0.747
MLE 0.731 0.497
TextGAN 0.65 0.645
GAN2vec-7 0.548 0.271
GAN2vec-10 0.641 0.342
GAN2vec-20-a 0.618 0.294
GAN2vec-20 0.661 0.335

Table 5: Model BLEU scores on Train Set of the Coco
Dataset (higher is better).

On the train set (Table 5), GAN2vec mod-
els have BLEU-2 scores comparable to its SOTA

4https://www.nltk.org/api/nltk.
tokenize.html#nltk.tokenize.word_
tokenize

5https://catalog.ldc.upenn.edu/docs/
LDC95T7/cl93.html
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counterparts, with the GAN2vec-20 model having
better bigram coverage that TextGAN. The BLEU-
3 scores, even though commendable, do not match
up as well, possibly signaling that our models
cannot keep coherence through longer sentences.
The increase in the cut-off sentence length, sur-
prisingly, does not degrade performance. As ex-
pected, a trained word tokenizer outperforms its
space-split counterpart. The performance of the
GAN2vec models on the test set (Table 6) follows
the same trends as that on the train set.

Model BLEU-2 BLEU-3
LeakGAN 0.746 0.816
SeqGAN 0.745 0.53
MLE 0.731 0.497
TextGAN 0.593 0.645
GAN2vec-7 0.429 0.196
GAN2vec-10 0.527 0.245
GAN2vec-20-a 0.484 0.206
GAN2vec-20 0.551 0.232

Table 6: Model BLEU scores on Test Set of the Coco
Dataset (higher is better).

Model BLEU-2 BLEU-3
LeakGAN 0.966 0.913
SeqGAN 0.95 0.84
MLE 0.916 0.769
TextGAN 0.942 0.931
GAN2vec-7 0.537 0.254
GAN2vec-10 0.657 0.394
GAN2vec-20-a 0.709 0.394
GAN2vec-20 0.762 0.518

Table 7: Self BLEU scores of the models trained on the
Coco dataset (lower is better).

Table 7 reports the self-BLEU scores, and all
the GAN2vec models significantly outperform the
SOTA models, including MLE. This implies that
GAN2vec leads to more diverse sentence genera-
tions and is less susceptible to mode collapse.

10 Discussions

Overall, GAN2vec can generate grammatically
coherent sentences, with a good bi-gram and tri-
gram coverage from the chosen corpus. BLEU
does not reward the generation of semantically
and syntactically correct sentences if the associ-
ated n-grams are not present in the corpus, and

coming up with a new standard evaluation met-
ric is part of on-going work. GAN2vec seems to
have comparable, if not better, performance com-
pared to Rajeswar et al. (2017)’s work on two
distinct datasets. It depicts the ability to capture
the critical nuances when trained on a conditional
corpus. While GAN2vec performs slightly worse
than most of the SOTA models using the Texygen
benchmark, it can generate a wide variety of sen-
tences, possibly given the inherent nature of word
vectors, and is less susceptible to mode collapse
compared to each of the models. GAN2vec pro-
vides a simple framework, with almost no over-
head, to transfer state of the art GAN research in
computer vision to natural language generation.

We observe that the performance of GAN2vec
gets better with an increase in the cut-off length
of the sentences. This improvement could be
because of extra training points for the model.
The drop from BLEU-2 to BLEU-3 scores is
more extreme than the other SOTA models, in-
dicating that GAN2vec may lack the ability to
generate long coherent sentences. This behav-
ior could be a manifestation of the chosen D and
G architectures, specifically the filter dimensions
of the convolution neural networks. Exploration
of other structures, including RNN-based models
with their ability to remember long term depen-
dencies, might be good alternatives to these initial
architecture choices. Throughout all the models in
the Texygen benchmark, there seems to be a mild
negative correlation between diversity and perfor-
mance. GAN2vec in its original setup leans more
towards the generation of new and diverse sen-
tences, and modification of its loss function could
allow for tilting the model more towards accurate
NLG.

11 Conclusion

While various research has extended GANs to op-
erate on discrete data, most approaches have ap-
proximated the gradient in order to keep the model
end-to-end differentiable. We instead explore a
different approach, and work in the continuous do-
main using word embedding representations. The
performance of our model is encouraging in terms
of BLEU scores, and the outputs suggest that it
is successfully utilizing the semantic information
encoded in the word vectors to produce new, co-
herent and diverse sentences.
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A CMU-SE

A.1 Conditional Architecture
While designing GAN2vec to support conditional
labels, as presented in Mirza and Osindero (2014),
we used the architecture in Figure 5 for our G. The
label is sent as an input to both the fully connected
and the de-convolution neural layers. The same
change is followed while updating D to support
document labels.

Fully Connected

Deconvolution Layers

Generator

Input to Discriminator

Random Noise Label

Figure 5: Generator Architecture for Conditional
GAN2vec.

A.2 Examples of Generated Sentences
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Table 8: Sentences Generated with GAN2vec on CMU-SE

Generated Sentences

<s> can you have a home </s>
<s> i ’d like to leave the
<s> this is the baggage . </s>
<s> i ’d like a driver ?
<s> do you draw well . </s>
<s> i ’d like to transfer it
<s> please explain it <unk>. </s>
<s> can i book a table .
<s> i ’ll take that car ,
<s> would i like a stay ?
<s> will you check it . </s>
<s> do you find it ? </s>
<s> i want some lovely cream .
<s> could you recommend a hotel with
<s> can you get this one in
<s> where ’s the petrol station ?
<s> what ’s the problem ? </s>
<s> i have a hangover dark .
<s> i come on the monday .
<s> i appreciate having a sushi .
<s> the bus is busy , please
<s> i dropped my camera . </s>
<s> i want to wash something .
<s> it ’s too great for <unk>
<s> i have a driver in the
<s> it is delicious and <unk><unk>
<s> please leave your luggage . .
<s> i had alcohol wow , </s>
<s> it is very true . </s>
<s> where ’s the hotel ? </s>
<s> will you see the cat ? </s>
<s> where is this bus ? </s>
<s> how was the spirits airline warranty
<s> i would n’t sunburn you
<s> prepare whisky and coffee , please
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Abstract

In this paper, we explore a multilingual trans-
lation model with a cross-lingually shared
layer that can be used as fixed-size sentence
representation in different downstream tasks.
We systematically study the impact of the size
of the shared layer and the effect of including
additional languages in the model. In contrast
to related previous work, we demonstrate that
the performance in translation does correlate
with trainable downstream tasks. In particu-
lar, we show that larger intermediate layers not
only improve translation quality, especially for
long sentences, but also push the accuracy of
trainable classification tasks. On the other
hand, shorter representations lead to increased
compression that is beneficial in non-trainable
similarity tasks. We hypothesize that the train-
ing procedure on the downstream task enables
the model to identify the encoded information
that is useful for the specific task whereas non-
trainable benchmarks can be confused by other
types of information also encoded in the rep-
resentation of a sentence.

1 Introduction

Neural Machine Translation (NMT) has rapidly
become the new Machine Translation (MT)
paradigm, significantly improving over the tra-
ditional statistical machine translation procedure
(Bojar et al., 2018). Recently, several models and
variants have been proposed with increased re-
search efforts towards multilingual machine trans-
lation (Firat et al., 2016; Lakew et al., 2018; Wang
et al., 2018; Blackwood et al., 2018; Lu et al.,
2018). The main motivation of multilingual mod-
els is the effect of transfer learning that enables
machine translation systems to benefit from rela-
tionships between languages and training signals
that come from different datasets (Ha et al., 2016;
Johnson et al., 2017; Gu et al., 2018). Another as-
pect that draws interest in translation models is the

effective computation of sentence representations
using the translation task as an auxiliary seman-
tic signal (Hill et al., 2016; McCann et al., 2017;
Schwenk and Douze, 2017; Subramanian et al.,
2018). An important feature that enables an imme-
diate use of the MT-based representations in other
downstream tasks is the creation of fixed-sized
sentence embeddings (Cı́fka and Bojar, 2018).

However, the effects of the size of sentence em-
beddings and the relation between translation per-
formance and meaning representation quality are
not entirely clear. Recent studies based on NMT
either focus entirely on the use of MT-based sen-
tence embeddings in other tasks (Schwenk, 2018),
on translation quality (Lu et al., 2018), on speed
comparison (Britz et al., 2017), or only exploring
a bilingual scenario (Cı́fka and Bojar, 2018).

In this paper, we are interested in exploring
a cross-lingual intermediate shared layer (called
attention bridge) in an attentive encoder-decoder
MT model. This shared layer serves as a fixed-
size sentence representation that can be straight-
forwardly applied to downstream tasks. We ex-
amine this model with a systematic evaluation on
different sizes of the attention bridge and exten-
sive experiments to study the abstractions it learns
from multiple translation tasks. In contrast to pre-
vious work (Cı́fka and Bojar, 2018), we demon-
strate that there is a correlation between transla-
tion performance and trainable downstream tasks
when adjusting the size of the intermediate layer.
The trend is different for non-trainable tasks that
benefit from the increased compression that denser
representations achieve, which typically hurts the
translation performance because of the decreased
capacity of the model. We also show that multilin-
gual models improve trainable downstream tasks
even further, demonstrating the additional abstrac-
tion that is pushed into the representations through
additional translation tasks involved in training.
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Figure 1: Architecture of our multilingual NMT system: (left) the attention bridge connects the language-specific
encoders and decoders; (center) input x1 . . . xn is translated into the decoder states s1 . . . st via the encoder states
H = h1 . . . hn and the attention bridge m1 . . .mk; (right) Computation of the hidden representation matrix A,
needed to obtain the fixed-size attentive matrix M = AHT .

2 Architecture

Our architecture follows the standard setup of
an encoder-decoder model in machine translation
with a traditional attention mechanism (Luong
et al., 2015). However, we augment the network
with language specific encoders and decoders to
enable multilingual training as in Lu et al. (2018),
plus we introduce an inner-attention layer (Liu
et al., 2016; Lin et al., 2017) that summarizes the
encoder information in a fixed-size vector repre-
sentation that can easily be shared among differ-
ent translation tasks with the language-specific en-
coders and decoders connecting to it. The over-
all architecture is illustrated in Figure 1 (see also
Vázquez et al., 2019). Due to the attentive con-
nection between encoders and decoders we call
this layer attention bridge, and its architecture is
an adaptation from the model proposed by Cı́fka
and Bojar (2018). Finally, each decoder follows
a common attention mechanism in NMT, with the
only exception that the context vector is computed
on the attention bridge, and the initialization is
performed by a mean pooling over it. Hence, the
decoder receives the information only through the
shared attention bridge.

The fixed-sized representation coming out of
the shared layer can immediately be applied to
downstream tasks.1 However, selecting a reason-
able size of the attention bridge in terms of atten-
tion heads (mi in Figure 1) is crucial for the per-
formance both in a bilingual and multilingual sce-

1As in Lu et al. (2018), we note that the attention bridge
is independent of the underlying encoder and decoder. While
we use LSTM, it could be easily replaced with a transformer
type network (Vaswani et al., 2017) or with a CNN (Gehring
et al., 2017).

nario as we will see in the experiments below.

3 Experimental setup

All models are implemented using the OpenNMT
framework (Klein et al., 2017) trained using the
same set of hyper-parameters.2 We use embed-
ding layers of 512 dimensions, two stacked bidi-
rectional LSTM layers with 512 hidden units (256
per direction) and an attentive decoder composed
of two unidirectional LSTM layers with 512 units.
Regarding the attention bridge, we experimented
with four different configurations: 1, 10, 25 and 50
attention heads with 1024 hidden units each. For
multilingual models, we used a language-rotating
scheduler, in which each mini-batch contains sen-
tences from a different language pair, cycling
through all the language pairs uniformly. We se-
lected the best model according to the BLEU score
on the validation set. We train all the models using
the Europarl Corpus v7 (Koehn, 2005), focusing
on 4 languages: English (EN), French (FR), Ger-
man (DE) and Spanish (ES). First we train bilin-
gual models for EN→DE; then we train multilin-
gual models {DE,ES,FR}↔EN; lastly we train a
final Many-to-Many model using the biggest size,
i.e., 50 attention heads, involving all translation
directions between the three languages, i.e., we
also include DE–ES, DE–FR and ES–FR.

To evaluate the sentence representations we
utilize the SentEval toolkit (Conneau and Kiela,
2018) that combines various established down-
stream tasks for testing representations of English

2Our fork implementation is available at https:
//github.com/Helsinki-NLP/OpenNMT-py/
tree/att-brg.
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SNLI SICK-E AVG
en→de k=1 63.86 77.09 71.46
en→de k=10 65.30 78.77 72.02
en→de k=25 65.13 79.34 72.68
en→de k=50 65.30 79.36 72.60

Multilingual k=1 65.56 77.96 72.67
Multilingual k=10 67.01 79.48 72.89
Multilingual k=25 66.94 79.85 73.67
Multilingual k=50 67.38 80.54 73.39

Many-to-Many k=50 67.73 81.12 74.33
Most frequent baseline† 34.30 56.70 48.19
GloVe-BOW† 66.00 78.20 75.81
Cı́fka and Bojar (2018) en→cs† 69.30 80.80 73.40

Table 1: Accuracy of different models on two SentE-
val tasks as well as the overall average accuracy on all
of them. The general trend is that a higher number of
attention heads and multilingual models are beneficial.
Results with † taken from Cı́fka and Bojar (2018).

sentences.3 In order to obtain a sentence vector out
of multiple attention heads we apply mean pooling
over the attention bridge.

We are also interested in the translation quality
to verify the appropriateness of our models with
respect to the main objective they are trained for.
For this, we adopt the in-domain development and
evaluation dataset from the ACL-WMT07 shared
task. Sentences are encoded using Byte-Pair En-
coding (Sennrich et al., 2016), with 32,000 merge
operations for each language.

4 SentEval: Classification tasks

Table 1 shows the performance of our models on
two popular tasks (SNLI and SICK-E) as in Cı́fka
and Bojar (2018) as well as the average of all 10
SentEval downstream tasks. The experiments re-
veal two important findings:

(1) In contrast with the results from Cı́fka and
Bojar (2018), our scores demonstrate that an in-
creasing number of attention heads is beneficial
for classification-based downstream tasks. All
models perform best with more than one attention
head and the general trend is that the accuracies
improve with larger representations. The previ-
ous claim was that there is the opposite effect and
lower numbers of attention heads lead to higher
performances in downstream tasks, but we do not
see that effect in our setup, at least not in the clas-
sification tasks.

(2) The second outcome is the positive effect

3Due to the large number of SentEval tasks, we report
results on natural language inference (SNLI, SICK-E/SICK-
R) and the average of all tasks.

SICK-R STSB AVG

en→de k=1 0.74 / 0.67 0.69 / 0.69 0.57
en→de k=10 0.76 / 0.71 0.69 / 0.69 0.52
en→de k=25 0.78 / 0.73 0.67 / 0.66 0.49
en→de k=50 0.78 / 0.72 0.65 / 0.64 0.46

Multilingual k=1 0.76 / 0.71 0.69 / 0.68 0.50
Multilingual k=10 0.78 / 0.74 0.69 / 0.69 0.48
Multilingual k=25 0.78 / 0.74 0.68 / 0.67 0.43
Multilingual k=50 0.79 / 0.74 0.66 / 0.64 0.40

Many-to-Many k=50 0.79 / 0.74 0.69 / 0.68 0.40

InferSent† 0.88 / 0.83 0.76 / 0.75 0.66
GloVe-BOW† 0.80 / 0.72 0.64 / 0.62 0.53
Cı́fka and Bojar (2018) en→cs† 0.81 / 0.76 0.73 / 0.73 0.45

Table 2: Results from supervised similarity tasks
(SICK-R and STSB), measured using Pearson’s (r) and
Spearman’s (ρ) correlation coefficients (r/ρ). The av-
erage across unsupervised similarity tasks on Pearson’s
measures are displayed in the right-most column. Re-
sults with † taken from Cı́fka and Bojar (2018).

of multilingual training. We can see that multilin-
gual training objectives are generally helpful for
the trainable downstream tasks.

Particularly interesting is the fact that the Many-
to-Many model performs best on average even
though it does not add any further training exam-
ples for English (compared to the other multilin-
gual models), which is the target language of the
downstream tasks. This suggests that the model
is able to improve generalizations even from other
language pairs (DE–ES, FR–ES, FR–DE) that are
not directly involved in training the representa-
tions of English sentences.

Comparing against benchmarks, our results are
in line with competitive baselines (Arora et al.,
2017). While our aim is not to beat the state of
the art trained on different data, but rather to un-
derstand the impact of various sizes of attention
heads in a bi- and multilingual scenario, we argue
that a larger attention bridge and multilinguality
constitute a preferable starting point to learn more
meaningful sentence representations.

5 SentEval: Similarity tasks

Table 2 summarizes the results using Pearson’s
and Spearman’s coefficient on the two SentEval
supervised textual similarity tasks, SICK-R and
STSB, and the average Pearson’s measure on the
remaining unsupervised similarity tasks.

Two different trends become visible: i) On the
unsupervised textual similarity tasks, having fewer
attention heads is beneficial. Contrary to the re-
sults in the classification tasks, the best overall
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k=1 k=10 k=25 k=50 M-to-M att.
de 14.66 19.87 20.61 20.83 20.47 22.72

en es 21.82 27.55 28.41 28.13 27.6 30.28
fr 17.8 23.35 24.36 23.79 24.15 25.88

de 16.97 21.39 23.42 24 24.4 24.28
es en 18.38 25.39 27.01 27.12 26.98 28.16
fr 17.52 21.93 24.4 23.9 24.47 25.39

Table 3: BLEU scores for multilingual models. Base-
line system in the right-most column.

model is provided by a bilingual setting with only
one attention head. This is in line with the find-
ings of Cı́fka and Bojar (2018) and could also be
expected as the model is more strongly pushed
into a dense semantic abstraction that is beneficial
for measuring similarities without further training.
More surprising is the negative effect of the mul-
tilingual models. We believe that the multilin-
gual information encoded jointly in the attention
bridge hampers the results for the monolingual se-
mantic similarity measured with the cosine dis-
tance, while it becomes easier in a bilingual sce-
nario where the vector encodes only one source
language, English in this case.

ii) On the supervised textual similarity tasks, we
find a similar trend as in the previous section for
SICK: both a higher number of attention heads and
multilinguality contribute to better scores, while
for STSB, we notice a different pattern.

This general discrepancy between results in su-
pervised and unsupervised tasks is not new in the
literature (Hill et al., 2016). We hypothesize that
the training procedure is able to pick up the infor-
mation needed for the task, while in the unsuper-
vised case a more dense representation is essential.

6 Translation quality

Finally, we also look at the translation perfor-
mance of the multilingual models we have intro-
duced above compared with a baseline, an stan-
dard encoder-decoder model with attention (Lu-
ong et al., 2015). In this section, we verify that
the attention bridge model is stable and success-
fully learns to translate in the multilingual case.

Table 3 shows the comparison between the mul-
tilingual models. In general, we observe the same
trend as in the bilingual evaluation concerning the
size of the attention bridge. Namely, more at-
tention heads lead to a higher BLEU score. The
model with 50 heads achieves the best results
among our models. It obtains scores that range
in the same ballpark as the baseline, only in a few

Figure 2: The BLEU scores obtained by the multilin-
gual models and baseline system with respect to differ-
ent sentence length.

cases there is a degradation of few BLEU points.
Notably, we do not see any increase in translation
quality from the {DE,ES,FR}↔EN model to the
Many-to-Many model; the BLEU scores are statis-
tically equivalent for all six translation directions.

One of the main motivations for having more
attention heads lies in the better support of longer
sentences. To study the effect, we group sentences
of similar length and compute the BLEU score
for each group. As we can see from Figure 2 a
larger number of attention heads has, indeed, a
positive impact when translating longer sentences.
Interestingly enough, on sentences with up to 45
words, there is no real gap between the results of
the baseline model and our bridge models with a
high number of attention heads. It looks like the
performance drop of the attention bridge models
is entirely due to sentences longer than 45 words.

We hypothesize that this might be due to the
increasing syntactic divergences between the lan-
guages that have to be encoded. The shared self-
attention layer needs to learn to focus on different
parts of a sentence depending on the language it
reads and, with increasing lengths of a sentence,
this ability becomes harder and more difficult to
pick up from the data alone.

7 Conclusion

We have shown that fixed-size sentence represen-
tations can effectively be learned with multilin-
gual machine translation using a inner-attention
layer and scheduled training with multiple trans-
lation tasks. The performance of the model heav-
ily depends on the size of the intermediate repre-
sentation layer and we show that a higher num-
ber of attention heads leads to improved trans-
lation and stronger representations in supervised
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downstream tasks (contradicting earlier findings)
and multilinguality also helps in the same down-
stream tasks. Our analysis reveals that the at-
tention bridge model mainly suffers on long sen-
tences. The next steps will include a deeper lin-
guistic analysis of the translation model and the
extension to multilingual models with more lan-
guages with greater linguistic diversity.
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Abstract

In this paper, we propose an architecture for
machine translation (MT) capable of obtain-
ing multilingual sentence representations by
incorporating an intermediate attention bridge
that is shared across all languages. We train
the model with language-specific encoders and
decoders that are connected through an inner-
attention layer on the encoder side. The atten-
tion bridge exploits the semantics from each
language for translation and develops into a
language-agnostic meaning representation that
can efficiently be used for transfer learning.
We present a new framework for the efficient
development of multilingual neural machine
translation (NMT) using this model and sched-
uled training. We have tested the approach in a
systematic way with a multi-parallel data set.
The model achieves substantial improvements
over strong bilingual models and performs
well for zero-shot translation, which demon-
strates its ability of abstraction and transfer
learning.

1 Introduction

Neural machine translation (NMT) provides an
ideal setting for multilingual MT because it can
efficiently share model parameters and take ad-
vantage of the various similarities found by the
model in the hidden layers and word embeddings
(Firat et al., 2016a; Johnson et al., 2017; Black-
wood et al., 2018). Furthermore, multilingual
NMT has the potential of considerably improving
the performance of neural translation systems for
low-resource languages (Lakew et al., 2017) and
enables zero-shot translation, i.e., translating be-
tween language pairs that were not seen during
training (Firat et al., 2016b; Johnson et al., 2017).

For this study we focus on models for multilin-
gual translation that learn language-agnostic rep-
resentations, where we outline the development of
a language-independent representation based on

an attention bridge shared across all languages.
For this, we apply an architecture based on shared
self-attention with language-specific encoders and
decoders that can easily scale to a large num-
ber of languages while addressing the task of
obtaining language-independent sentence embed-
dings (Cı́fka and Bojar, 2018; Lu et al., 2018;
Lin et al., 2017). Those embeddings are created
from the encoder’s self-attention and connect to
the language-specific decoders that attend to them,
hence the name ‘bridge’. Additionally, we add
a penalty term to avoid redundancy in the shared
layer. More details of the architecture are given in
section 2.

To summarise our contributions, we i) present
a multilingual translation system that efficiently
tackles the task of learning language-agnostic sen-
tence representations; ii) verify that this model
enables effective transfer learning and zero-
shot translation through the shared representation
layer; and iii) show that multilingually trained em-
beddings improve the majority of downstream and
sentence probing tasks demonstrating the abstrac-
tions learned from the combined translation tasks.

2 Model Architecture

Our architecture follows the standard setup of
an encoder-decoder model of machine transla-
tion with a traditional attention mechanism (Bah-
danau et al., 2015; Luong et al., 2015). How-
ever, to enable multilingual training we augment
the network with language-specific encoders and
decoders trainable with a language-rotating sched-
uler (Dong et al., 2015; Schwenk and Douze,
2017). We also incorporate a self-attention layer
(attention bridge), shared among all language
pairs, to serve as a language-agnostic layer (Cı́fka
and Bojar, 2018; Lu et al., 2018)

Attention bridge: Each encoder takes as input
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a sequence of tokens (x1, . . . , xn) and produces n
dh–dimensional hidden states, H = (h1, . . . , hn)
with hi ∈ Rdh , in our case using a bidirec-
tional long short-term memory (LSTM) (Graves
and Schmidhuber, 2005)1. Next, we encode this
variable length sentence-embedding matrix H into
a fixed size M ∈ Rdh×k capable of focusing on k
different components of the sentence (Lin et al.,
2017; Chen et al., 2018; Cı́fka and Bojar, 2018),
using self-attention as follows:

A = softmax
(
W2ReLU(W1H

T )
)

(1)

M = AH (2)

where W1 ∈ Rdw×dh and W2 ∈ Rk×dw are weight
matrices, with dw a hyper-parameter set arbitrar-
ily, and k is the number of attention heads in the
attention bridge.

Each decoder follows a common attention
mechanism in NMT (Luong et al., 2015), with an
initial state computed by mean pooling over M ,
and using M instead of the hidden states of the
encoder for computing the context vector.

Penalty term: The attention bridge matrix M
from Eq. (2) could learn repetitive information
for different attention heads. To address this issue,
we add a penalty term to the loss function, proven
effective in related work (Lin et al., 2017; Chen
et al., 2018; Tao et al., 2018), which forces each
vector to focus on different aspects of the sentence
by making the columns of A to be approximately
orthogonal in the Frobenius norm:

L = −log (p (Y |X)) +
∥∥AAT − I

∥∥2
F
, (3)

where the Frobenius norm of a matrix A can be
defined as the sum of the squared singular values
of A. By incorporating this term into the loss func-
tion we force matrix AAT to be similar to the iden-
tity matrix, that is,

∑
j aijaji ≈ 1. Additionally,

considering the fact that the rows of A sum to 1,
with entries in [0, 1], it follows that the columns
of A will be forced to be approximately orthogo-
nal, and hence penalize redundancy, similar to the
double stochastic attention in Xu et al. (2015).

1Note that the attention bridge is independent of the un-
derlying encoder and decoder (Lu et al., 2018). While we
use a biLSTM, it could be replaced with a gated recurrent
unit (GRU) (Cho et al., 2014), a transformer type network
(Vaswani et al., 2017) or with a convolutional neural network
(CNN) (Gehring et al., 2017).

3 Experimental Setup

We conducted four translation experiments and
tested the learned sentence representations via
downstream tasks. We used the multi30k dataset
(Elliott et al., 2016) for training and validation in
all available languages: Czech, German, French
and English, and tested the trained model with the
flickr 2016 test data of the same dataset and ob-
tained BLEU scores using the sacreBLEU script2

(Post, 2018). We lowercased, normalized and to-
kenized using the Moses toolkit (Koehn et al.,
2007), and applied a 10K-operations Byte Pair En-
coding (BPE) model per language (Sennrich et al.,
2016).

Each encoder consists of 2 stacked BiLSTMs of
size dh = 512, i.e., the hidden states per direction
are of size 256. Each decoder includes 2 stacked
unidirectional LSTMs with hidden states of size
512. For the model input and output, the word
embeddings have dimension dx = dy = 512.
We used an attention bridge layer with 10 atten-
tion heads with dw = 1024, the dimensions of W1

and W2 from Eq. (1). We chose k = 10 because
the mean length of a preprocessed sentence in the
training data is 13.2 tokens in our case. Choos-
ing a much smaller k would create a bottleneck in
the flow of information, and a bigger one would
make the model slower and prone to overfitting
(Raganato et al., 2019).

We used a Stochastic Gradient Descent (SGD)
optimizer with a learning rate of 1.0 and batch size
64, and selected the best model on the develop-
ment set for each experiment. We implemented
our model on top of an OpenNMT-py (Klein et al.,
2017) fork, which we make available for repro-
ducibility purposes.3

4 Results

First, we verify the correct functionality of the ar-
chitecture in a bilingual setting, which will be-
come our baseline for comparison to the multilin-
gual models - both with and without an attention
bridge.

On the left side of Table 1, we can see that the
attention bridge model is almost on par with the
standard bilingual model for all language pairs in
our data set. A decrease in performance is to be

2with signature BLEU+case.lc+numrefs.1+smooth.exp+
tok.13a+version.1.2.11

3https://github.com/Helsinki-NLP/
OpenNMT-py/tree/att-brg.
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BILINGUAL
src/tgt EN DE CS FR

EN - 36.78 28.00 55.96
DE 39.00 - 23.44 38.22
CS 35.89 28.98 - 36.44
FR 49.54 32.92 25.98 -

BILINGUAL + ATT BRIDGE
EN DE CS FR

EN - 35.85 27.10 53.03
DE 38.19 - 23.97 37.40
CS 36.41 27.28 - 36.41
FR 48.93 31.70 25.96 -

{DE,FR,CS} ↔ EN
EN DE CS FR

- 37.85 29.51 57.87
39.39 - 0.35 0.83
37.20 0.65 - 1.02
48.49 0.60 0.30 -

{DE,FR,CS} ↔ EN + MONOLING
EN DE CS FR

- 38.92 30.27 57.87
40.17 - 19.50 26.46
37.30 22.13 - 22.80
50.41 25.96 20.09 -

M-2-M
EN DE CS FR

- 37.70 29.67 55.78
40.68 - 26.78 41.07
38.42 31.07 - 40.27
49.92 34.63 26.92 -

M-2-M + MONOLINGUAL
EN DE CS FR

- 38.48 30.47 57.35
41.82 - 26.90 41.49
39.58 31.51 - 40.87
50.94 35.25 28.80 -

Table 1: BLEU scores obtained in the experiments. Left: Bilingual models, our baselines. Center: Models trained
on {De,Fr,Cs}↔En, with zero-shot translations in italics. Right: Many-to-many model. Both zero-shot and M-2-M
translations improve significantly when including monolingual data. (Best results in green cells.)

expected since we pass the information through
a fixed size representation made out of 10 self-
attention heads without including multilingual in-
formation. However, the drop is less than one
BLEU point except for English to French, which
seems to be an exceptional outlier.

With this result we can justify the validity of
the architecture assuring that the additional bottle-
neck does not create significant deterioration and
we can move on with the multilingual models.

4.1 Many-To-One and One-To-Many Models
The power of the attention bridge comes from its
ability to share information across various lan-
guage pairs. We now assess the effects of multi-
lingual information on the translation of individual
language pairs, by training many-to-one and one-
to-many models. This setup allows us to test the
abstraction potential of the attention bridge and its
effectiveness to encode multilingual information
in zero-shot translation.

First we trained a {De,Fr,Cs}↔En model (Ta-
ble 1 (center-top)), which resulted in substantial
improvements for the language pairs seen dur-
ing training, exceeding both bilingual baselines.
However, this model is entirely incapable of per-
forming zero-shot translations. We believe that
the inability of the model to generalize to unseen
language-pairs arises from the fact that every non-
English encoder (or decoder) only learned to pro-
cess information that was to be decoded into En-
glish (or encoded from English input), a finding
consistent with Lu et al. (2018). To address this
problem, we incorporate monolingual data during
training, that is, for each available language A, we
included pairs of identical copies of each sentence
in A in the training data. All examples come from

the same parallel corpus as before and no addi-
tional data is used.

As a consequence, we see a remarkable increase
in the BLEU scores, including a substantial boost
for the language pairs not seen during training (Ta-
ble 1 (center-bottom)). It seems that the monolin-
gual data informs the model that English is not the
unique source/target language. Additionally, there
is a positive effect on the seen language pairs (up
to almost 2 BLEU points for French to English),
the cause of which is not immediately evident. It
is possible that the shared layer acquires additional
information that can be included in the abstraction
process yet not available to the other models.

4.2 Many-to-Many Models
We also tested the architecture in a many-to-many
setting with all language pairs included, and sum-
marize our results in Table 1 (right). As in the pre-
vious case, we compare settings with and without
monolingual training data.

The inclusion of language pairs results in an im-
proved performance when compared to the bilin-
gual baselines, as well as the Many↔En cases, ex-
cept for the En→Fr and En→De tasks. Moreover,
the addition of monolingual data leads to even
higher scores, producing the overall best model.
The improvements in BLEU range from 1.40 to a
remarkable 4.43 when compared to the standard
bilingual model.

The zero-shot translation capabilities also de-
serve a closer look. Figure 1 summarizes a sys-
tematic evaluation in which we trained six differ-
ent models where we include all but one of the
available language pairs in training. The cyan bars
illustrate the performance of the model on the un-
seen language pairs compared to our best multi-
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lingual model (in red) and the bilingual, fully su-
pervised model (in dark blue). Note, that those
zero-shot models are generally better than the ones
from the previously discussed {De,Fr,Cs,En}↔En
model in Table 1. In most cases, they come very
close to the supervised model and even fare well
against the multilingual ones.

Figure 1: For every language pair, we compare the
BLEU scores between our best model (M-2-M with
monolingual data), the zero-shot of the model trained
without that specific language pair and the bilingual
model of that language pair.

5 Downstream Tasks

We apply the sentence representations learned by
our model to downstream tasks collected in the
SentEval toolkit (Conneau and Kiela, 2018) to
evaluate the quality of our language-agnostic sen-
tence embeddings. We run each experiment with
five different seeds, and present the average of
these scores in Table 2, where we compare our
bilingual models against a baseline consisting of
the best score achieved by the bilingual models
with attention bridge. Since our models were
trained on limited data and are not directly compa-
rable to models trained on large-scale data sets, for
comparison purposes we present results obtained
with GloVe-BoW vectors (Pennington et al., 2014)
trained with the same BPE-encoded data as the
models.

The sentence embeddings produced by the mul-
tilingual models show consistent improvements,
for the classification tasks of the SentEval collec-
tion, with only two exceptions. Moreover, our
many-to-many model obtains better results in the

SICK Relatedness (SICKR) and STS-Benchmark
(STS-B); that is, the trainable semantic similarity
tasks. 2

For the SentEval probing tasks (Conneau et al.,
2018) we use the default recommended settings,
i.e., a multilayer perceptron classifier with sig-
moid nonlinearity, 200 hidden units, and 0.1
dropout rate. Again, we can observe improve-
ments in the majority of cases when adding multi-
ple languages to the training procedure. Remark-
ably, we observe a significant increment on the ac-
curacy for the specific tasks of Length (superficial
property), Top Constituents (syntactic property)
and Object Number (semantic information) when
training the encoders with multilingual data. Mul-
tilingual models outperform the bilingual models
in all but one test.

DOWNSTREAM TASKS
TASK BASELINE M↔ EN M-2-M GloVe-BoW

CR 68.52 68.32 69.01 63.97
MR 60.08 60.40 61.80 52.32
MPQA 73.51 72.98 73.28 68.76
SUBJ 77.25 78.64 80.88 58.75
SST2 61.92 62.02 62.24 54.68
SST5 31.15 32.10 31.83 28.20
TREC 67.75 69.84 66.40 21.16
MRPC 70.96 68.83 70.43 64.87
SNLI 61.75 64.52 65.12 35.05
SICKE 74.85 75.46 76.92 56.62
SICKR 0.652 0.659 0.677 0.174
STS-B 0.616 0.618 0.630 0.163

PROBING TASKS

Length 80.76 84.76 85.41 30.90
WC 10.02 9.56 9.13 0.22
Depth 32.14 33.05 31.60 20.66
TopConst 40.12 44.04 39.76 11.48
BShift 57.41 58.35 59.76 50.08
Tense 67.61 69.36 68.27 54.72
SubjNum 68.55 69.67 69.89 54.32
ObjNum 70.01 72.19 73.29 60.58
SOMO 49.90 49.46 50.12 50.03
CoordInv 61.38 60.57 62.21 49.88

Table 2: Scores obtained in the SentEval tasks. The
BASELINE column reports the best score among the
bilingual models + att bridge. Green cells indicate
the highest score. All tasks show the accuracy of the
model except for SICKR and STS-B tasks, which in-
clude Pearson mean values.

2However, the non-trainable semantic similarity tasks ex-
hibited decreasing scores for multilingual models (not shown
here due to space limitations). This can be explained by the
fact that the additional information encoded in our multilin-
gual embeddings cannot effectively be separated from the in-
formation that is necessary for monolingual similarity mea-
sures, without further training.

36



6 Effect of the Penalty Term

In order to study the effect of the penalty term,
we train additional bilingual models, without
using the penalty term (Eq. 3) in the training. We
then compare BLEU scores, where the penalty
term is present and absent, as shown in Table 3.
Overall, both types of models show performance
in the same ballpark yielding similar results. As
discussed in Lin et al. (2017), the quantitative
effect of the penalty term might not be obvious
for some tasks, while keeping the positive effect
of encouraging the attentive matrix to be focused
on different aspects of the sentence.

WITH PENALTY TERM

EN DE CS FR

EN - 35.85 27.10 53.03
DE 38.19 - 23.97 37.40
CS 36.41 27.28 - 36.41
FR 48.93 31.70 25.96 -

WITHOUT PENALTY TERM

EN DE CS FR

EN - 34.67 27.22 54.39
DE 38.70 - 23.44 38.2
CS 35.76 28.50 - 36.4
FR 48.76 31.60 25.55 -

Table 3: BLEU scores obtained with the BILINGUAL +
ATT BRIDGE models in the experiments with and with-
out penalty term.

While the effect of the penalty term might not
be very significant in this case, we note that adding
the penalty term does not hurt the performance
while helping the model not to learn potential re-
dundant information.

7 Conclusion

We propose a multilingual NMT architecture
with three modifications to the common at-
tentive encoder-decoder architecture: language-
specific encoders and decoders, a shared language-
independent attention bridge and a penalty term
that forces this layer to attend different parts of
the input sentence. This constitutes a multilin-
gual translation system that efficiently incorpo-
rates transfer learning and can also tackle the task
of learning multilingual sentence representations.
The results suggest that the attention bridge layer
can efficiently share parameters in a multilingual
setting, increasing up to 4.4 BLEU points com-
pared to the baselines. Additionally, we make use
of the sentence representations produced by the

shared attention bridge of the trained models for
downstream-testing, which helped us to verify the
generalization capabilities of the model. The re-
sults suggest that sentence embeddings improve
with additional languages involved in training the
underlying machine translation model.
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Abstract

Reduction of the number of parameters is one
of the most important goals in Deep Learn-
ing. In this article we propose an adaptation
of Doubly Stochastic Variational Inference for
Automatic Relevance Determination (DSVI-
ARD) for neural networks compression. We
find this method to be especially useful in lan-
guage modeling tasks, where large number of
parameters in the input and output layers is of-
ten excessive. We also show that DSVI-ARD
can be applied together with encoder-decoder
weight tying allowing to achieve even better
sparsity and performance. Our experiments
demonstrate that more than 90% of the weights
in both encoder and decoder layers can be re-
moved with a minimal quality loss.

1 Introduction

The problem of neural networks compression has
recently gained more interest as the number of pa-
rameters (and hence memory size) of modern neu-
ral networks increased drastically. Moreover, only
a few weights prove to be relevant for prediction
while the majority are de facto redundant (Han
et al., 2015).

In this paper we suggest an adaptation of a
Bayesian approach called Automatic Relevance
Determination (ARD) for neural networks com-
pression in language modeling tasks, where the
first and the last linear layers often have enormous

∗These two authors contributed equally; the ordering of
their names was chosen arbitrarily. The work was done when
the first author was an intern at the Samsung R&D Institute.

size. We derive the Doubly Stochastic Variational
Inference (DSVI) algorithm for non-iid (not in-
dependent and identically distributed) objects, a
common case in language modeling, and use it to
perform optimization of our models.

Furthermore, we extend this approach so that
it could be applied together with the weight ty-
ing technique (Press and Wolf, 2017; Inan et al.,
2016), i.e., using the same set of parameters for
both weight matrices of the first and the last lay-
ers, which has been proved highly efficient.

2 Related works

Most of the works on neural networks com-
pression can be roughly divided into two cate-
gories: those dealing with matrix decomposition
approaches (Lu et al., 2016; Arjovsky et al., 2016;
Tjandra et al., 2017; Grachev et al., 2019) and
those that leverage pruning techniques (Han et al.,
2015; Narang et al., 2017). From this point of view
methods based on Bayesian techniques (Louizos
et al., 2017; Molchanov et al., 2017) can be con-
sidered as a more mathematically justified version
of pruning.

We have focused on the pruning in application
to word-level language modeling as this task usu-
ally involves a large vocabulary, hence, causing
weight matrices of the first and the last layers to
be huge. Chirkova et al. (2018) also consider
Bayesian pruning in language modeling, though
their approach is based on the Variational Dropout
(VD) technique, which has been proved to be
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poorly theoretically justified (Hron et al., 2018),
whereas ARD does not encounter these issues
while maintaining similar efficacy (Kharitonov
et al., 2018).

At last, as far as we are concerned, combin-
ing DSVI-ARD (or other Bayesian prunning tech-
niques) with weight tying has not been considered
previously.

3 Language modeling with neural
networks

The language modeling problem is one of the im-
portant classical NLP problems and has various
applications such as machine translation and text
classification.

This problem is usually formulated as
probabilistic prediction of a word sequence
(w1, . . . , wT ) = (wi)

T
i=1 as follows:

P
(

(wi)
T
i=1

)
= P

(
wT | (wi)T−1

i=1

)
P
(

(wi)
T−1
i=1

)
=

=
T∏

t=1

P
(
wt| (wi)t−1

i=1

)
≈

T∏

t=1

P
(
wt| (wi)t−1

i=t−T0

)

(1)

The last equation in (1) is approximated as it is
almost always impossible to calculate this expres-
sion exactly for a sequence of words of arbitrary
length. Therefore, the calculation is performed
only within a context of a fixed size T0.

Nowadays, approaches that perform the approx-
imation for whole words involve different vari-
ations of RNNs (Bengio et al., 2003; Mikolov,
2012) such as LSTM or GRU (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014). In word-
level models the input layer maps words from the
vocabulary V to some vector representation, and
vice versa for the output layer: from a vector to a
distribution over words in the vocabulary. It leads
to sizes of these layers being proportional to the
vocabulary size |V| which is tens of thousands in
a typical use case.

Assume using LSTM cells as recurrent units.
We can compute the total number of parameters
in a network via the following formula:

ntotal = 8LD2 + 2|V|D, (2)

where L is the number of recurrent hidden layers,
and D is the hidden layers size (for simplicity we
let all hidden layers be of the same size). Various

designs (Bengio and Senecal, 2003; Chen et al.,
2016) have been proposed to reduce it, but still in
word-level language modeling tasks with a signif-
icantly large vocabulary size the second term in
the sum (2) makes the largest contribution. Some-
times the softmax (decoder) layer can solely oc-
cupy up to a third of the whole network memory
space.

The following section describes the technique
that performs efficient reduction of parameters in
linear layers. This technique can be applied to
the decoder layer of RNN (or to both decoder and
encoder layers in tied-weight setting) providing
the overall network compression with a negligible
drop in quality.

4 DSVI-ARD

In this section we describe how the Dou-
bly Stochastic Variational Inference algorithm
for Automatic Relevance Determination (DSVI-
ARD) originally proposed in (Titsias and Lázaro-
Gredilla, 2014) can be adopted for solving mul-
ticlass classification task and, thus, leveraged in
neural networks training for compressing their
dense layers (in particular, decoder layers in
RNNs).

4.1 Automatic Relevance Determination
We formulate the multiclass classification problem
in a Bayesian framework that can provide a useful
tool for feature selection — the so-called Auto-
matic Relevance Determination (ARD).1

Consider a discriminative probabilistic model
given a training dataset (X,Y ) = {(xn, yn)}Nn=1

of N independent objects:

p(W,Y | X,Λ) = p(W | Λ)

N∏

n=1

p(yn |W,xn) =

=

K∏

i=1

D∏

j=1

N (wij | 0, λij)
N∏

n=1

Softmax (Wxn)yn

(3)

Here xn ∈ RD is the feature vector of the n-th
object, yn ∈ {1, . . . ,K} is the label of the n-
th object’s class, W ∈ RK×D is the matrix of
model parameters and Λ ∈ RK×D is the matrix
of hyperparameters defining the prior distribution
p(W | Λ) over parameters W .

1Here we consider linear classification for simplicity, al-
though the same model is applicable to neural networks, see
subsection 4.3.
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The prior distribution p(W | Λ) is considered
to be element-wise factorized Gaussian over each
element wij (zero mean and tunable variance λij).
The likelihood function p(yn |W,xn) is the yn-
th element of the softmax vector of linear logits
Wxn. Such a likelihood function is quite typical
in classification tasks and can be encountered in
multivariate Logistic Regression.

The two goals of the subsequent Bayesian infer-
ence are, first, obtaining posterior distribution over
the model parameters conditioned on the training
dataset p(W | X,Y,Λ), which can be leveraged
in prediction on the test set, and, second, opti-
mal model selection, i.e., hyperparameters tuning.
Both problems can be solved simultaneously by
maximizing the Evidence Lower Bound (ELBO):

L(q,Λ) = EW∼q(W ) [log p(Y |W,X)]−
−KL (q(W )‖p(W | Λ)) .

(4)

ELBO is a function of two variables: an ar-
bitrary variational distribution over parameters
q(W ) and model hyperparameters Λ, and can
be decomposed into two parts: the data term
EW∼q(W ) [log p(Y |W,X)] and the negative KL-
divergence between the variational approximation
q(W ) and the prior distribution p(W | Λ) (KL-
term) −KL (q(W )‖p(W | Λ)). We further show
that maximization of ELBO with respect to both
q and Λ solves the model selection problem while
also fitting q to the posterior.

ELBO has several useful properties such as
L(q,Λ) ≤ log p(Y | X,Λ), ∀q,Λ (bounds the ev-
idence logarithm log p(Y | X,Λ) from be-
low) and L(q,Λ) = log p(Y | X,Λ) if and only
if q(W ) = p(W | X,Y,Λ), so maximization of
ELBO with respect to q for fixed Λ is equivalent
to fitting q to the posterior p(W | X,Y,Λ), hence
solving the first of the mentioned Bayesian infer-
ence problems.

Maximization of the evidence p(Y | X,Λ)
with respect to hyperparameters Λ is a well-known
Bayesian model selection method, also known
as empirical Bayes estimation (Carlin and Louis,
1997). A model with the highest evidence is con-
sidered to be “the best” in terms of both data fit and
model complexity. Evidence maximization can be
performed via ELBO maximization as

max
Λ

log p(Y | X,Λ) = max
q,Λ
L(q,Λ). (5)

Finally, this double maximization procedure, as

we have shown above, handles the model selection
problem while also fitting q to the posterior.

From the view of the ELBO functional it is clear
that only the KL-term KL (q(W )‖p(W | Λ) de-
pends on Λ, hence maximization of ELBO with
respect to Λ is equivalent to minimization of the
KL-term with respect to Λ.

Now we restrict the variational distribution q to
the factorized Gaussian:

q(W | µ,σ) =
K∏

i=1

D∏

j=1

N (wij | µij , σ2
ij), (6)

where µ,σ ∈ RK×D are the variational parame-
ters.

This way ELBO maximization (or equivalently,
KL-term minimization) with respect to Λ can be
performed analytically with the solution at

λ∗ij = µ2
ij + σ2

ij . (7)

After substituting Λ∗ from (7) into the ELBO
equation (4) and taking into account the varia-
tional family restriction (6) we can rewrite the
maximization problem (5) as follows:

EW∼q(W |µ,σ) [log p(Y |W,X)] +

+
1

2

K∑

i=1

D∑

j=1

log
σ2
ij

µ2
ij + σ2

ij

−→ max
µ,σ

(8)

This equation (8) is the final form of the ARD
ELBO maximization problem. We can see that
the first term (data term) induces the variational
parameters to describe the observed data well by
sharpening the variational distribution at the maxi-
mum likelihood point, while the second term (KL-
term) makes irrelevant parameters shrink. The
mutual maximization of both terms leads to a
sparse solution (in the limit), at which all redun-
dant features are zeroed. The following subsec-
tions describe how it can be performed in practice,
especially in application to recurrent neural net-
works.

4.2 DSVI
The Doubly Stochastic Variational Inference
(DSVI) is a method of stochastic gradient maxi-
mization of ELBO with respect to the variational
parameters. We provide the standard DSVI-ARD
description in Algorithm 1. At each iteration
two types of random variables are sampled: a
mini-batch of objects {xm, ym}Mm=1 ⊆ (X,Y )
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and a set of “proto-weights” for each object
in the mini-batch εm ∼ N (0, I), εm ∈ RK×D,
which are used to obtain stochastic gradients
of the log-likelihood with respect to the varia-
tional parameters via the reparametrization trick
(RT) (Kingma et al., 2015). DSVI does not de-
pend on a specific form of the log-likelihood func-
tion log p(y | W,x), but only requires its gradi-
ent ∇W log p(y | W,x), so the same procedure is
applicable for different models with differentiable
log-likelihoods. DSVI can also be regarded as ef-
ficient SGD minimization of the negative ELBO
loss functional (8), which consists of the data term
and the KL-regularizer.

Algorithm 1 Doubly stochastic variational infer-
ence

Input: log-likelihood log p(y | W,x), training
dataset (X,Y ) of size N , learning rates {ρk},
mini-batch size M
Initialize the variational parameters µ(0),σ(0),
k = 0
repeat
k = k + 1
Sample a mini-batch
{xm, ym}Mm=1 ⊆ (X,Y )
for all objects (xm, ym) in the mini-batch do

Sample εm ∼ N (0, I), εm ∈ RK×D
Wm := µ(k−1) + σ(k−1) � εm

end for
gDataµ := N

M

∑M
m=1∇µ log p(ym |Wm,xm)

gDataσ := N
M

∑M
m=1∇σ log p(ym |Wm,xm)

gKLµ := ∇µ
[

1
2

K∑
i=1

D∑
j=1

log
σ2
ij

µ2ij+σ2
ij

]∣∣∣µ=µ(k−1)

σ=σ(k−1)

gKLσ := ∇σ
[

1
2

K∑
i=1

D∑
j=1

log
σ2
ij

µ2ij+σ2
ij

]∣∣∣µ=µ(k−1)

σ=σ(k−1)

gµ := gDataµ + gKLµ
gσ := gDataσ + gKLσ
µ(k) = µ(k−1) + ρkgµ
σ(k) = σ(k−1) + ρkgσ

until convergence criterion is met

4.3 DSVI-ARD in Recurrent Neural
Networks

As was noted above, DSVI can be applied to any
probabilistic ARD model with differentiable like-
lihood. A neural network with a softmax layer in-

Algorithm 2 Doubly stochastic variational infer-
ence for non-independent data

Input: log-likelihood log p(y | W,x), training
dataset (X,Y ) of size N , learning rates {ρk},
mini-batch size M
Initialize the variational parameters µ(0),σ(0),
k = 0
repeat
k = k + 1
Sample a mini-batch
{xm, ym}Mm=1 ⊆ (X,Y ) of non-iid objects
Sample one ε ∼ N (0, I), ε ∈ RK×D
W := µ(k−1) + σ(k−1) � ε
gDataµ := N

M

∑M
m=1∇µ log p(ym |W,xm)

gDataσ := N
M

∑M
m=1∇σ log p(ym |W,xm)

gKLµ := ∇µ
[

1
2

K∑
i=1

D∑
j=1

log
σ2
ij

µ2ij+σ2
ij

]∣∣∣µ=µ(k−1)

σ=σ(k−1)

gKLσ := ∇σ
[

1
2

K∑
i=1

D∑
j=1

log
σ2
ij

µ2ij+σ2
ij

]∣∣∣µ=µ(k−1)

σ=σ(k−1)

gµ := gDataµ + gKLµ
gσ := gDataσ + gKLσ
µ(k) = µ(k−1) + ρkgµ
σ(k) = σ(k−1) + ρkgσ

until convergence criterion is met

troduces a likelihood function similar to the one
considered in (3). Hence, we suggest replacing
the softmax output layer with the ARD layer for
multiclass classification and train it with the DSVI
algorithm computing its log-likelihood gradients
via backpropagation due to the usage of the RT.

When training RNN with a DSVI-ARD layer
as a decoder (softmax layer in this case) we en-
counter the question of sampling strategy for pa-
rameters: one sample per object or once for the
whole mini-batch of objects. The first strategy is
typical for standard classification tasks and is im-
plemented in the classical DSVI algorithm 1. The
second one is more justified in the RNN case be-
cause objects in one sequence (mini-batch) are not
independent and should better be processed with
the same weights. We propose Algorithm 2, which
is applicable in the case of non-iid objects in a
mini-batch. Summing it up, it differs from the
standard DSVI only in that the “proto-weights”
ε ∈ RK×D are sampled once for the whole mini-
batch at each iteration.

We also consider applying DSVI-ARD in a tied-
weight setting. For that we slightly change the
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model so that both the encoder and decoder layers
contribute into the likelihood via the same set of
weights. Now (in the non-iid DSVI algorithm 2)
the same set of parameters (weight matrix) is sam-
pled for both layers, and their gradients with re-
spect to the variational parameters are summed
to obtain the mutual gradient of log p(y | W,x)
for the data term update gData. The KL-term re-
mains the same as neither new random variables
are added to the model nor its prior distribution
or variational approximation changes. The only
thing that varies is the likelihood of the model, i.e.,
the data term: now the encoder is also conditioned
on the variational parameters µ and σ. This basi-
cally means that the gradients w.r.t. the encoder’s
weights are propagated back to the variational pa-
rameters.

5 Experiments

We have conducted several experiments to test the
DSVI-ARD compression approach in language
modeling. We used LSTM and LSTM with tied
weights models from (Zaremba et al., 2014; Inan
et al., 2016) respectively as our baselines: the
experiments involved the same LSTM architec-
ture with two hidden layers of size 650 and two
datasets: PTB (Mikolov et al., 2010) and Wiki-
text2 (Merity et al., 2016); also each mini-batch of
objects was constructed from bs word sequences
(bs = 10 and bs = 20 for evaluation and training
respectively) of length bptt = 35.

We applied dropout after the embedding (except
for the tied-weight ARD models because ARD can
be regarded as a special form of regularization by
itself) and hidden layers, with a dropout rate as a
hyperparameter. We used stochastic gradient de-
scent (SGD) as an optimization procedure, with
adaptive learning rate decreasing from the start-
ing value by a multiplicative factor (both are hy-
perparameters) each time validation perplexity has
stopped improving.

We also compared our approach to other
compression techniques: matrix decomposition-
based (Grachev et al., 2019) and VD-
based (Chirkova et al., 2018). For the last
one we used a similar model: a network with one
LSTM layer of 256 hidden units.

5.1 Training and evaluation

The whole set of parameters of a model with
DSVI-ARD layers can be divided into the varia-

Figure 1: Plots of validation cross-entropy (red line) of
a LSTM model with a DSVI-ARD softmax layer on the
PTB dataset and its corresponding sparsity (blue line)
for different possible threshold log λthresh values (top)
and the distribution histogram of its prior log-variances
log λij (bottom). We display the density on a log scale
due to a very sparse distribution. The threshold cho-
sen for further model evaluation (the best in terms of
perplexity on the validation set) log λoptthresh is marked
with a green dashed line.

tional parameters µ,σ and all the other network
parameters (including biases of the DSVI-ARD
layers). Variational optimization is performed
with the DSVI-ARD algorithm, which, in turn,
only requires gradients of the log-likelihood and
KL-divergence. Therefore, overall model training
is a standard gradient optimization of parameters
based on backpropagation (specifically, BPTT in
the RNN case) with negative ELBO as the loss
function.

For more efficient training we applied the KL-
cost annealing technique (Sønderby et al., 2016).
The idea is to multiply the KL-term in ELBO by
a variable weight, called the KL-weight, at train-
ing time. The weight gradually increases from
zero to one during the first several epochs of train-
ing. This technique allows achieving better final
performance of the model because such a train-
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Original model Dataset Architecture
Number

of parameters, M
(Full / Softmax)

Removed parameters, %
(Full / Softmax) Perplexity Accuracy,

%

LSTM, (Zaremba
et al., 2014)

PTB

Original 19.8 / 6.5 No compression 80.85 27.4%
DSVI-ARD (ours) 13.4 / 0.14 32.1% / 97.8% 91.84 27.2%

LR for Softmax, (Grachev et al., 2019) 14.5 / 1.19 26.8 % / 81.7 % 84.12 N/A
TT for Softmax, (Grachev et al., 2019) 14.3 / 1.03 27.8 % / 84.2 % 88.55 N/A

Wikitext2 Original 50.1 / 21.6 No compression 94.27 27.5%
DSVI-ARD (ours) 28.9 / 0.43 42.3% / 98.0% 103.54 27.6%

LSTM + tied
weights, (Inan
et al., 2016)

PTB Original 13.3 / 6.5 No compression 75.68 27.7%
DSVI-ARD (ours) 7.4 / 0.66 44.0% / 89.9% 82.27 27.3%

Wikitext2 Original 28.4 / 21.6 No compression 86.62 27.9%
DSVI-ARD (ours) 8.7 / 1.94 69.3% / 91.0% 87.36 28.1%

LSTM, (Chirkova
et al., 2018) PTB

Original 5.64 / 2.56 No compression 129.3 N/A
VD, (Chirkova et al., 2018) 3.2 / 0.12 43.3 % / 95.5 % 109.2 N/A

DSVI-ARD (Ours) 3.18 / 0.1 43.6 % / 96.1 % 106.2 25.9 %

Table 1: Language modeling experiments results. We provide the number of parameters left after pruning (in
millions) and the achieved compression ratios (in percents) of the whole network and the softmax layer alone
along with the final quality (perplexity and accuracy) on the test set for each evaluated model. The original
(uncompressed) models quality is provided for comparison.

Figure 2: Distribution histogram of the prior log-
variances log λij obtained for a LSTM model with a
DSVI-ARD softmax layer on the PTB dataset. We pro-
vide the standard-scaled density to justify the usage of
a log scale in Fig. 1 (bottom).

ing procedure can be considered as pre-training on
data (when the data term in ELBO dominates) and
then starting fair optimization of the true ELBO
(when the KL-weight reaches one). We used a
simple linear KL-weight increasing strategy with
a step selected as a hyperparameter.

During the evaluation of our models we do not
sample parameters as we do in the training phase
but instead set the approximated posterior mean
µ as DSVI-ARD layers weights. Then we zero
out the weights with the corresponding logarithms
of prior variances lower than a certain threshold
log λthresh (a hyperparameter selected on valida-

tion):

log λ∗ij < log λthresh ⇒ µij := 0. (9)

This procedure essentially provides the desired
sparsity as redundant weights are being literally
removed from the network.

Each experiment was conducted as follows.
We trained several models for some number of
epochs with different hyperparameter initializa-
tion (such as dropout rate, learning rate, etc.).
Then we picked the best model in terms of cross-
entropy (log-perplexity) on the validation set at
the last training epoch. We did not zero weights
during evaluation at this phase, in other words,
log λthresh = −∞ in equation (9). After that, we
started threshold selection for the picked model:
we iterated over possible values of log λthresh
from the “leave-all” to the “remove-all” extreme
values and chose the one (denoted by log λoptthresh)
at which the best validation perplexity was ob-
tained. Finally, we evaluated the model on the test
set using the chosen optimal threshold log λoptthresh.

In our results we report the achieved compres-

sion ratio cr =
∑K

i=1

∑D
j=1 1[log λ∗ij<log λoptthresh]

KD , per-
plexity and accuracy2 on the test set.

5.2 Results
Table 1 concludes all the results obtained during
our experiments.

The comparison of DSVI-ARD with other
dense layers compression approaches revealed

2By accuracy, we mean the fraction of correctly predicted
words. The prediction is performed by taking the argmax of
the softmax distribution over vocabulary words.
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that our models can exhibit comparable perplex-
ity quality while achieving much higher compres-
sion (in Grachev et al. (2019) case) and even sur-
pass models based on similar Bayesian compres-
sion techniques (in Chirkova et al. (2018) case).

Also it can be seen that encoder-decoder weight
tying helps to obtain higher overall compression
(from almost 45% to 70% reduction of all model
weights), due to a smaller number of parameters in
the whole network, and even better results in both
perplexity and accuracy on both datasets. Quality
improvement after weight tying is a common case,
however, we see that it helps to especially enhance
the performance of our models (perplexity drops
by almost 10 points in PTB case and more than
16 points in Wikitext2 case), which gives grounds
for the proposed combination of DSVI-ARD and
weight tying.

One can argue that DSVI-ARD may lead to
overpruning (Trippe and Turner, 2018) because in
all our experiments (except the last one, compar-
ing with Chirkova et al. (2018) results) a slight
quality drop in terms of perplexity can be ob-
served. However, we specifically provide the test
accuracy as well, in terms of which we achieve
comparable or even better results than original
models. We suggest that this effect might be
caused by prediction uncertainty (or entropy) in-
crease rather than model quality deterioration.

Fig. 1 demonstrates plots of cross-entropy
(log-perplexity) and sparsity for different thresh-
olds log λthresh — essentially the compression-
quality trade-off plot — and the log-scaled dis-
tribution histogram of the decoder layer’s prior
log-variances log λ∗ij obtained for a DSVI-ARD
LSTM model trained on the PTB dataset. We
also provide the same distribution on the stan-
dard scale (Fig. 2) for comparison. The dashed
green line denotes the value of the chosen thresh-
old log λoptthresh which provides the best validation
perplexity. We can observe that the overwhelm-
ing majority of weights in the last layer are indeed
redundant, i.e., have small prior variances, do not
contribute to the inference, and can be removed
without harming much model performance. We
argue that DSVI-ARD eliminates weights that ob-
struct generalization while leaving only those ac-
tually necessary for correct prediction.

6 Conclusion

In this paper we adopted the DSVI-ARD algo-
rithm for compressing recurrent neural networks.
Our main contributions are extending DSVI-ARD
to the case of non-iid objects and combining it
with the weight tying technique. In our ex-
periments involving LSTM networks in language
modeling tasks, we have managed to obtain sub-
stantially high compression ratios at an acceptable
quality loss. The proposed method turned out to
be comparable to or even surpassing other com-
pression techniques like matrix decomposition and
variational dropout.

There are several possible avenues for future
work. An intriguing application of the proposed
DSVI-ARD method for RNNs is the compres-
sion of current state-of-the-art models (Yang et al.,
2017; Dai et al., 2019), which require enormous
amounts of memory and computational resources.
At the same time, one of the drawbacks of the cur-
rent Bayesian compression approaches is a lack
of their expressive ability, i.e., most of them are
based on oversimplified posterior approximations
and prior distributions (e.g., factorized Gaussian),
which may lead to overly rough estimates and
overall model inefficiency. A rigorous study of
this problem is required. Another possible direc-
tion is bringing Bayesian framework into matrix
decomposition-based methods as well. This fu-
sion may lead to more effective and justified com-
pression techniques.
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Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH 2010, 11th Annual Conference of the
International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010,
pages 1045–1048.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry P.
Vetrov. 2017. Variational dropout sparsifies deep
neural networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 2498–2507.

Sharan Narang, Erich Elsen, Gregory Diamos, and
Shubho Sengupta. 2017. Exploring sparsity
in recurrent neural networks. arXiv preprint
arXiv:1704.05119.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
EACL 2017, Valencia, Spain, April 3-7, 2017, Vol-
ume 2: Short Papers, pages 157–163.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. 2016. How
to train deep variational autoencoders and proba-
bilistic ladder networks. CoRR, abs/1602.02282.

Michalis K. Titsias and Miguel Lázaro-Gredilla.
2014. Doubly stochastic variational bayes for non-
conjugate inference. In Proceedings of the 31th In-
ternational Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, pages 1971–
1979.

Andros Tjandra, Sakriani Sakti, and Satoshi Naka-
mura. 2017. Compressing recurrent neural network
with tensor train. In 2017 International Joint Con-
ference on Neural Networks, IJCNN 2017, Anchor-
age, AK, USA, May 14-19, 2017, pages 4451–4458.

47



Brian Trippe and Richard Turner. 2018. Overprun-
ing in variational bayesian neural networks. arXiv
preprint arXiv:1801.06230.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. 2017. Breaking the softmax bot-
tleneck: A high-rank RNN language model. CoRR,
abs/1711.03953.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR, abs/1409.2329.

48



Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), pages 49–54
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

MoRTy: Unsupervised Learning of Task-specialized Word Embeddings
by Autoencoding

Nils Rethmeier
German Research Center for AI (DFKI)

Alt-Moabit 91c
10559 Berlin. Germany

nils.rethmeier@dfki.de

Barbara Plank
Department of Computer Science

IT University of Copenhagen
Rued Langgaards Vej 7

2300 Copenhagen S, Denmark
bplank@itu.dk

Abstract
Word embeddings have undoubtedly revolu-
tionized NLP. However, pre-trained embed-
dings do not always work for a specific
task (or set of tasks), particularly in lim-
ited resource setups. We introduce a simple
yet effective, self-supervised post-processing
method that constructs task-specialized word
representations by picking from a menu of
reconstructing transformations to yield im-
proved end-task performance (MORTY). The
method is complementary to recent state-of-
the-art approaches to inductive transfer via
fine-tuning, and forgoes costly model archi-
tectures and annotation. We evaluate MORTY
on a broad range of setups, including different
word embedding methods, corpus sizes and
end-task semantics. Finally, we provide a sur-
prisingly simple recipe to obtain specialized
embeddings that better fit end-tasks.

1 Introduction

Word embeddings are ubiquitous in Natural Lan-
guage Processing. They provide a low-effort, high
pay-off way to improve the performance of a spe-
cific supervised end-task by transferring knowl-
edge. However, recent works indicate that univer-
sally best embeddings are not yet possible (Bolle-
gala and Bao, 2018; Kiela et al., 2018a; Dingwall
and Potts, 2018), and that they instead need to be
tuned to fit specific end-tasks using inductive bias
– i.e., semantic supervision for the unsupervised
embedding learning process (Conneau et al., 2018;
Perone et al., 2018). This way, embeddings can be
tuned to fit a specific single-task (ST) or multi-task
(MT: set of tasks) semantic (Xiong et al., 2018).

Fine-tuning requires labeled data, which is of-
ten either too small, not available or of low
quality and creating or extending labeled data is
costly and slow. Word embeddings are typically
induced from huge unlabeled corpora with bil-
lions of tokens, but for limited-resource domains

like biology or medicine, it becomes less clear
whether there is still transfer. We set out to cre-
ate task-specified embeddings cheaply, with self-
supervision, that are able to provide consistent im-
provements, even in limited resource settings.

We evaluate the impact of our method, named
MORTY, on 18 publicly available benchmark
tasks developed by Jastrzebski et al. (2017)1 us-
ing two ways to induce embeddings, Fasttext and
GloVe. We test them in two setups corresponding
to two different overall aims: (a) to specialize em-
beddings to better fit a single supervised task or,
(b) to generalize embeddings for multiple super-
vised end-tasks, i.e., to optimize MORTYs for sin-
gle or multi-task settings. Since most embeddings
are pre-trained on large corpora, we also investi-
gate whether our method further improves embed-
dings trained on small corpus setups.

Hence, we demonstrate the method’s applica-
tion for single-task, multi-task, small, medium
and web-scale (common crawl) corpus-size set-
tings (Section 4). Learning to scale-up by pre-
training on more (un-)labeled data is both: (a) not
always possible in low-resource domains due to
lack of such data, and (b) heavily increases the
compute requirements of comparatively small su-
pervised down-stream task. This not only leads
to high per model-instance costs but also limits
learning to scale-out, i.e., when combining many
smaller models into a larger dynamic model as
is desirable in continual learning settings, where
models, inputs and objectives may emerge or dis-
appear over time. To provide an alternative in
such settings we design MORTY as a learning-to-
scale-down approach, that uses less data and com-
pute to achieve a performance improvement de-
spite forgoing (un-)supervised fine tuning on tar-
get domain data. Consequently, MORTY uses

1https://github.com/kudkudak/
word-embeddings-benchmarks
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very little resources,2 producing a low carbon
footprint, especially regarding recent, compute in-
tensive, scale-up approaches like ELMo or BERT
(Peters et al., 2018; Devlin et al., 2018) which have
high hardware and training time requirements and
a large carbon footprint as recently demonstrated
by Strubell et al. (2019). As a result, we demon-
strate a simple, unsupervised scale-down method,
that allows further pretraining exploitation, while
requiring minimum extra effort, time and com-
pute resources. As in standard methodology, op-
timal post-processed embeddings can be selected
according to multiple proxy-tasks for overall im-
provement or using a single end-task’s develop-
ment split—e.g., on a fast baseline model for fur-
ther time reduction.

2 MoRTy embeddings

Our proposed post-processing method provides a
Menu of Reconstructing Transformations to yield
improved end-task performance (MORTY).

Approach: The key idea of MORTY is to create
a family of embeddings by learning to reconstruct
the original pre-trained embeddings space via au-
toencoders.

The resulting family or representations (post-
processed embeddings) gives a “menu” which can
be picked from in two ways: (a) standard devel-
opment set tuning, to gain performance at a single
supervised task (ST), or (b) via benchmark tasks,
to boost performance of multiple tasks (MT). The
first is geared towards optimizing embeddings for
a single specific task (specialization), the latter
aims at embedding generalization, that works well
across tasks.

In more details, the overall MORTY recipe is:
(1) Train (or take): an original (pre-trained) em-
bedding space Eorg using embedding method f .
(2) Reconstruct Eorg: compute multiple ran-
domly initialized representations of Eorg using a
reconstruction loss (mean square error, cf. below).
(3) Pick: performance-optimal representation for
the end-task(s) via a task’s development split(s) or
proxy tasks, depending on the end-goal, i.e., spe-
cialization or generalization. (4) Gain: use opti-
mal MORTY (Epost) to push relative performance
on end task(s).

2< 1GB memory including the whole dataset, computes
fast on GPU and CPU and inherits FastText’s dynamic out-
of-vocabulary token embedding generation, which is useful
in handling unforeseen words in down-stream tasks.

Which autoencoder variant? For step (2), we
found the following autoencoder recipe to work
best: A linear autoencoder with one hidden layer,
trained via bRMSE (batch-wise root mean squared
error), the same hidden layer size as the original
embedding model and half of its learning rate3–
i.e., a linear, complete autoencoder, trained for a
single epoch (cf. end of Section 3).

We experimented with alternative autoen-
coders: sparse (Ranzato et al., 2007), denois-
ing, discrete (Subramanian et al., 2018), and un-
dercomplete autoencoders, but found the simple
recipe to work best. In the remainder of the pa-
per, we test this ‘imitation-scheme’ setup recipe.

3 Experiments

With the aim of deriving a simple yet effective
‘best practice’ usage recipe, we evaluate MORTY

as follows: a) using two word embedding methods
f ; b) corpora of different sizes to induce Eorg, i.e.,
small, medium and web-scale; c) evaluation across
18 semantic benchmark tasks spanning three se-
mantic categories to broadly examine MORTY’s
impact, while assessing both single and multi-task
end goals; and finally e) evaluate 1-epoch setups
in relation to different corpus sizes.

Embeddings and Corpus Size: We evaluate
embeddings trained on small, medium (millions of
tokens) and large (billions of tokens) corpus sizes.
In particular, we train 100-dimensional embed-
dings with Fasttext (Bojanowski et al., 2016)4 and
GloVe (Pennington et al., 2014)5 on the 2M and
103M WikiText created by Merity et al. (2016).
We complement them with off-the-shelf web-
scale Fasttext and GloVe embeddings (trained on
600B and 840B tokens, respectively). This re-
sults in the following vocabulary sizes for Fast-
text and GloVe embeddings, respectively: on 2M
25,249 and 33,237 word types. For 103M we get
197,256 and 267,633 vocabulary words. Public,
off-the-shelf – common-crawl trained – Fasttext
and GloVe embeddings have very large vocabular-
ies of 1,999,995 and 2,196,008 words.

To account for variation in results, we train both
embedding methods five times each6 on the two
WikiText corpus sizes. We observed only minor

3Original Fasttext and GloVe used lr = 0.05, so lr ≈
0.025 is a ‘careful’ rate and used throughout the experiments
in this paper.

4To train Fasttext we used https://fasttext.cc
5To train GloVe we used the python glove python wheel
6Fasttext was trained using the implementation’s
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variations, < 0.5% between runs for both Fasttext
and GloVe, in overall performance Σ – i.e., when
summing the scores of all benchmark tasks.

Semantic benchmark tasks: We use a publicly
available word embedding benchmark implemen-
tation developed by Jastrzebski et al. (2017) – cho-
sen for reproducibility and breadth. The 18 tasks
span three semantic categories: (a) word similarity
(6 tasks), (b) word analogy (3 tasks), and (c) word
and sentence categorization (9 tasks).7

Evaluation and Experimental Details For the
single-task setup we show MORTY’S relative,
percentual performance change (ST % change)
produced by choosing the best MORTY embed-
ding per task – 18 MORTYs. Correspondingly, for
multi-task results we show MT % change ob-
tained by choosing the MORTY embedding with
the best score over all tasks Σ – i.e., one MORTY

for all tasks. Performances in Table 1 are aver-
aged over 5 runs each of Fasttext and GloVe per
corpus size. To maximize MORTY’S usability we
evaluate a 1-epoch training scheme. We test its
robustness – particularly for limited resource use
– by training 1 epoch on three corpus sizes (small
to web-scale), using the best multi-task (MT/ Σ)
base embedder – see Fasttext Table 1. We again
account for variation by using 3 randomly initial-
ized MORTY runs, each over the 5 respective runs
per corpus size. In this experiment, a single epoch
yielded very stable boosts, that are comparable to
multi-epoch training.

4 Results

The main results are provided in Table 1 and Fig-
ure 1. There are several take-aways.

f : Fasttext and GloVe: First, regarding the
base embeddings (cf. per-category base perfor-
mance scores in Table 1): i) we notice that Fasttext
performs overall better than GloVe; ii) classifica-
tion and similarity results improve the larger the
corpus; consistently over f ; and iii) GloVe is bet-
ter for the analogy tasks on web-scale data.8

(fasttext.cc) default parameters. GloVe was trained
with the same parameters as in (Pennington et al., 2014) –
Figure 4b. Though, 4a gave the same results.

7Jastrzebski et al. (2017) use measures form the dataset
literature: Spearman correlation for similarity, 3CosAdd for
analogy and accuracy and cluster purity for categorization.

8GloVe 3CosAdd matches (Levy and Goldberg, 2014).

MORTY for multi-task application: Second,
the MT % change columns show that a sin-
gle best MORTY improves overall performance
Σ (black row)9 – the sum of 18 tasks – by 8.9,
5.8 and 3.4 percent compared to Fasttext base.
As corpus size increases, there is less space for
MORTY to improve Σ scores. What is inter-
esting to note is that MORTY is able to recover
analogy performance on 103M (to more than 2M
level). This is also reflected in the Google and
MSR analogy scores doubling and tripling (mid-
dle column). On 2M we also see a modest im-
provement (6.2) for similarity tasks, while classi-
fication on 2M slightly dropped. Regarding GloVe
(3 rightmost columns) we notice lower overall per-
formance (black column), which is consistent with
findings by Levy et al. (2015). MORTY on GloVe
produces lower but more stable improvements for
the MT setting (middle column), with analogy and
similarity performance noticeably increasing for
the small 2M dataset. Generally, we see both per-
formance increases and drops for individual task,
especially on 2M and Fasttext, indicating that, a
single overall best MORTY specializes the base
Fasttext embedding to better fit a specific subset
of the 18 tasks, while still beating the base embed-
ders f in overall score (Σ).

MORTY for single-task application: In the ST
% change columns we see best single task (ST)
results for task-specific optimal MORTY embed-
dings. Both embedders get consistent boosts, with
Fasttext exhibiting significantly higher improve-
ment from MORTY on 2M and 103M, despite al-
ready starting out at a higher base performance.

training corpus size (small, medium, common crawl)
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Figure 1: 1-epoch MORTY (MT %) performance
change over Fasttext: Blue bars show Fasttext base-
line performance (100%). 3 Morty runs: trained on
Fasttext for 1 epoch (2x5 Fasttext for corpus sizes 2M
and 103M and 1x for 600B). Detailed description on
next page.

9Note that, % change for Σ is not the average of the in-
dividual task changes, but the % change of the sum of 18
individual scores.
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embedder
model

Fasttext base
performance

MT % change by
1 overall Morty 

ST % change by
18 single Mortys

GloVe base
performance

MT % change by
1 overall Morty 

ST % change by
18 single Mortys

train size 2M 103M 600B 2M 103M 600B 2M 103M 600B 2M 103M 840B 2M 103M 840B 2M 103M 840B
AP 0.31 0.59 0.68 -6.1 -0.9 -1.5 8.2 5.2 4 0.2 0.43 0.61 2.7 5.6 9.3 13.2 9.2 12.2
BLESS 0.3 0.73 0.84 -2.2 3.8 -3 13 9.7 5.4 0.27 0.51 0.85 1.6 -1.6 -1.8 7.9 7.9 4.7
Battig 0.14 0.32 0.48 -3.6 0.1 -3.7 7 4 0.5 0.1 0.19 0.46 3.5 2 1.9 7.4 5.4 8.5
ESSLI 1a 0.48 0.76 0.77 2.2 4.3 17.6 27.5 10.2 17.6 0.46 0.63 0.75 0 3.1 9.1 8 8.9 12.1
ESSLI 2b 0.63 0.75 0.78 9.2 2.7 0 26.5 11.3 12.9 0.51 0.74 0.75 19.9 -0.5 6.7 23.7 11.7 16.7
ESSLI 2c 0.54 0.54 0.62 -3.7 10.7 -10.7 11 19.7 10.7 0.46 0.54 0.62 2.1 2.7 0 16.9 16.7 10.7
Google 0.06 0.04 0.12 33.6 293.8 187.3 45.3 319.3 217.2 0 0.05 0.58 42.7 13.8 2.8 60.4 18.6 5.9
SEval 12 2 0.11 0.16 0.24 1.6 4.3 -2.8 18.1 14.1 4.8 0.11 0.15 0.2 6.5 2.2 1 11.4 5 2.4
MSR 0.28 0.08 0.18 18.8 246.2 117.1 27.5 267.3 137 0 0.09 0.57 45.6 30.9 -2.4 100.7 38.1 10.1
MTurk 0.24 0.52 0.73 65.6 5.1 1.1 98 12.6 1.5 0.3 0.46 0.69 -22.4 2.6 0.5 1.6 4.2 2.6
RG65 0.29 0.71 0.86 65.2 0.7 2.1 104.7 5.3 5.6 0.15 0.44 0.77 11.6 3.9 -1.3 30.8 10 4
RW 0.21 0.38 0.59 -17.1 -0.8 -2 4.1 2.4 0.9 0.2 0.21 0.46 -2.1 11.8 2 4 19.8 10.3
MEN 0.36 0.71 0.84 13 0.4 -0.4 22 2.3 0.3 0.16 0.51 0.8 3.6 5.6 0.5 15.1 7 7.7
SimLex999 0.18 0.31 0.5 -23.2 3.7 -1.2 7.3 9 3.1 0.03 0.22 0.41 147.8 7.3 3.1 228.3 11.7 9.3
TR9856 0.1 0.13 0.18 2.8 -4.1 -37.1 20.5 17.3 -2.5 0.09 0.08 0.1 13.9 8.9 -4.7 19.8 47.3 36.7
WS353 0.46 0.69 0.79 3.9 1 -1.7 10 2.9 0.6 0.16 0.45 0.74 31.5 7.2 0.7 36.8 8.2 5.6
WS353R 0.35 0.63 0.74 16.4 1.7 -2.8 24.3 4.1 1.6 0.08 0.4 0.69 53.1 6.5 1.1 62 8.2 2.7
WS353S 0.52 0.77 0.84 3.2 0.4 0.6 13.3 3 1.9 0.27 0.58 0.8 15.1 6.5 0.3 20.2 7.6 5.9
∑ tasks 5.55 8.83 10.79 8.9 5.8 3.4 8.9 5.8 3.6 3.56 6.68 10.84 7.8 4.3 1.9 7.8 4.3 1.9
category 2.39 3.7 4.17 -2.1 -0.2 1.8 11.4 4.5 3.1 2 3.04 4.05 3.5 -0.8 2.4 7.3 3.3 5.5
analogy 0.45 0.28 0.55 15.5 115 72.2 24.6 125.2 92.7 0.11 0.29 1.34 7.4 4.2 1.3 12.3 15.8 6.5
similarity 2.71 4.85 6.07 6.2 -0.6 -4.7 17.3 2.2 -0.3 1.45 3.35 5.45 9.2 1.8 0 11 6.3 2.9

legend <50% 50% >50% < -10% no change > +10% <50% 50% >50% < -10% no change > +10%

Table 1: MORTY on Fasttext and GloVe: Above are scores for: 18 individual tasks (AP-WS353S), the sum
of 18 scores Σ, and scores grouped by semantic: similarity (AP-ESSLI2c), analogy (Google-MSR), classifica-
tion (MTurk-WS253S). Left column: shows absolute scores of the original embedder. Middle column: shows
% score change after fine-tuning with the MORTY that has the highest overall score Σ – i.e., 1 MORTY for
all tasks (multi-task). Right column: shows % score change after applying 18 individually best MORTYs
per single-task – i.e., 18 MORTYs . Each column is further split by corpus size – 2M, 103M(illion) and
600/840B(illion) tokens. All scores are averages over 5 original embedder scores and respective MORTY changes.

Applying the MORTY 1-epoch recipe So far,
we saw MORTYs potential for overall (ST/MT/Σ)
performance improvements, but will we observe
the same in the wild? To answer this question
for the MT use-case, we apply a 1-epoch train-
ing only recipe. That is, we train 1-epoch us-
ing a linear, complete autoencoder using half of
the base embedders learning rate on three ran-
domly initialized MORTYs, and then test them
on the 18 task (MT) setup. Figure 1 shows con-
sistent MT/Σ score improvements for each of the
3 MORTY-over-Fasttext runs (red, yellow, green)
on 2M, 103M, and 600B vs. base Fasttext (blue
100).

We see that, for practical application, this al-
lows MORTY to boost supervised MT perfor-
mance even without using a supervised develop-
ment split or proxy task(s), while also eliminat-
ing multi-epoch tuning. Both Figure 1 and Table 1
show similar overall (MT) improvements per cor-
pus size, which suggests that 1-epoch training is
sufficient and that MORTY is especially benefi-
cial on smaller corpora – i.e., in limited resource
settings.

5 Related Work

There is a large body of work on informa-
tion transfer between supervised and unsuper-
vised tasks. First and foremost unsupervised-
to-supervised transfer includes using embeddings
for supervised tasks. However, transfer also works
vice versa, in a supervised-to-unsupervised
setup to (learn to) specialize embeddings to better
fit a specific supervised signal (Ruder and Plank,
2017; Ye et al., 2018). This includes injecting gen-
erally relevant semantics via retrofitting or auxil-
iary multi-task supervision (Faruqui et al., 2015;
Kiela et al., 2018b). Supervised-to-supervised
methods provide knowledge transfer between su-
pervised tasks which is exploited successively
(Kirkpatrick et al., 2017), jointly (Kiela et al.,
2018b) and in joint-succession (Hashimoto et al.,
2017).

Unsupervised-to-unsupervised transfer is less
studied. Dingwall and Potts (2018) proposed a
GloVe model-modification that retrofits publicly
available GloVe embeddings to produce special-
ized domain embeddings, while Bollegala and
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Bao (2018) propose meta-embeddings via denois-
ing autoencoders to merge diverse (Fasttext and
GloVe) embeddings spaces. The later, is also a
low-effort approach and closest to ours. How-
ever, it focuses on embedding merging that they
tuned on a single semantic similarity task, while
MORTY provides an overview of tuning for 19
different settings. Furthermore, MORTY requires
only a single embedding space, which contributes
to the literature by outlining that meta-embedding
improvements may partly stem from re-encoding
rather than only from semantic merging.

6 Conclusion

We demonstrated a low-effort, self-supervised,
learning scale-down method to construct task-
optimized word embeddings from existing ones to
gain performance on a (set of) supervised end-
task(s) without direct domain adaptation. De-
spite its simplicity, MORTY is able to produce
significant performance improvements for single
and multi-task supervision settings as well as
for a variety of desirable word encoding proper-
ties while forgoing building and tuning complex
model architectures and labeling.10 Perhaps most
importantly, MORTY shows considerable bene-
fits for low-resource settings and thus provides a
learning-to-scale-down alternative to recent scale-
up approaches.
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Abstract

Deep learning models continuously break new
records across different NLP tasks. At the
same time, their success exposes weaknesses
of model evaluation. Here, we compile several
key pitfalls of evaluation of sentence embed-
dings, a currently very popular NLP paradigm.
These pitfalls include the comparison of em-
beddings of different sizes, normalization of
embeddings, and the low (and diverging) cor-
relations between transfer and probing tasks.
Our motivation is to challenge the current eval-
uation of sentence embeddings and to provide
an easy-to-access reference for future research.
Based on our insights, we also recommend bet-
ter practices for better future evaluations of
sentence embeddings.

1 Introduction

The field of natural language processing (NLP) is
currently in upheaval. A reason for this is the suc-
cess story of deep learning, which has led to ever
better reported performances across many differ-
ent NLP tasks, sometimes exceeding the scores
achieved by humans. These fanfares of victory are
echoed by isolated voices raising concern about
the trustworthiness of some of the reported results.
For instance, Melis et al. (2017) find that neural
language models have been misleadingly evaluated
and that, under fair conditions, standard LSTMs
outperform more recent innovations. Reimers and
Gurevych (2017) find that reporting single perfor-
mance scores is insufficient for comparing non-
deterministic approaches such as neural networks.
Post (2018) holds that neural MT systems are un-
fairly compared in the literature using different
variants of the BLEU score metric. In an even
more general context, Lipton and Steinhardt (2018)
detect several current “troubling trends” in machine
learning scholarship, some of which refer to evalu-
ation.

Sentence encoders (Kiros et al., 2015; Conneau
et al., 2017; Pagliardini et al., 2018) are one par-
ticularly hot deep learning topic. Generalizing the
popular word-level representations (Mikolov et al.,
2013; Pennington et al., 2014) to the sentence level,
they are valuable in a variety of contexts: (i) clus-
tering of sentences and short texts; (ii) retrieval
tasks, e.g., retrieving answer passages for a ques-
tion; and (iii) when task-specific training data is
scarce—i.e., when the full potential of task-specific
word-level representation approaches cannot be
leveraged (Subramanian et al., 2018).

The popularity of sentence encoders has led to a
large variety of proposed techniques. These range
from ‘complex’ unsupervised RNN models predict-
ing context sentences (Kiros et al., 2015) to su-
pervised RNN models predicting semantic relation-
ships between sentence pairs (Conneau et al., 2017).
Even more complex models learn sentence embed-
dings in a multi-task setup (Subramanian et al.,
2018). In contrast, ‘simple’ encoders compute sen-
tence embeddings as an elementary function of
word embeddings. They compute a weighted aver-
age of word embeddings and then modify these rep-
resentations via principal component analysis (SIF)
(Arora et al., 2017); average n-gram embeddings
(Sent2Vec) (Pagliardini et al., 2018); consider gen-
eralized pooling mechanisms (Shen et al., 2018;
Rücklé et al., 2018); or combine word embeddings
via randomly initialized projection matrices (Wiet-
ing and Kiela, 2019).

The embeddings of different encoders vary
across various dimensions, the most obvious being
their size. E.g., the literature has proposed embed-
dings ranging from 300d average word embeddings
to 700d n-gram embeddings, to 4096d InferSent
embeddings, to 24k dimensional random embed-
dings (Wieting and Kiela, 2019). Unsurprisingly,
comparing embeddings of different sizes is unfair
when size itself is crucially related to performances
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in downstream tasks, as has been highlighted be-
fore (Rücklé et al., 2018; Wieting and Kiela, 2019).

We compile several pitfalls when evaluating and
comparing sentence encoders. These relate to (i)
the embedding sizes, (ii) normalization of embed-
dings before feeding them to classifiers, and (iii)
unsupervised semantic similarity evaluation. We
also discuss (iv) the choice of classifier used on
top of sentence embeddings and (v) divergence in
performance results which compare downstream
tasks and so-called probing tasks (Conneau et al.,
2018).

Our motivation is to assemble diverse obser-
vations from different published works regarding
problematic aspects of the emerging field of sen-
tence encoders. We do so in order to provide future
research with an easy-to-access reference about is-
sues that may not (yet) be widely known. We also
want to provide the newcomer to sentence encoders
a guide for avoiding pitfalls that even experienced
researchers have fallen prey to. We also recom-
mend best practices, from our viewpoint.

2 Setup

We compare several freely available sentence en-
coders (listed in Table 1) with SentEval (Conneau
and Kiela, 2018), using its default settings. SentE-
val trains a logistic regression classifier for specific
downstream tasks with the sentence embeddings as
the input. We compare 6 downstream tasks from
the fields of sentiment analysis (MR, SST), product
reviews (CR), subjectivity (SUBJ), opinion polarity
(MPQA), and question-type classification (TREC).
In these tasks, the goal is to label a single sentence
with one of several classes. We also evaluate on the
STSBenchmark (Cer et al., 2017), which evaluates
semantic similarity of pairs of sentences.

Sentence Encoder Emb. Size

InferSent (Conneau et al., 2017) 4096
Sent2Vec (Pagliardini et al., 2018) 700
PMeans (Rücklé et al., 2018) 3600
USE (Cer et al., 2018) 512
Avg. Glove (Pennington et al., 2014) 300
Avg. Word2Vec (Mikolov et al., 2013) variable
SIF-Glove (Arora et al., 2017) 300

Table 1: Sentence encoders used in this work, together
with the sizes of the resulting sentence embeddings.

3 Problems

Size matters. Currently, there is no standard size
for sentence embeddings and different encoders
induce embeddings of vastly different sizes.

For example, the sentence encoders of Conneau
et al. (2017), Pagliardini et al. (2018), Rücklé et al.
(2018), Cer et al. (2018), Kiros et al. (2015), Sub-
ramanian et al. (2018) are 4096, 700, 3600, 512,
4800, 1500/2048 dimensional, respectively. How-
ever, Conneau et al. (2017) show that their own
model performs better when dimensionality of the
embeddings is larger. They hypothesize that the
linear model they use for evaluation (logistic re-
gression) performs better with higher dimensional
embeddings because these are more likely to be
linearly separable. Rücklé et al. (2018) then argued
that a comparison to low-dimensional baselines is
unfair under this finding and increase the size of the
baselines by concatenating different word embed-
ding types or by concatenating different pooling
operations (min, max, average). Wieting and Kiela
(2019) further extend this idea by enlarging the
word embedding size with randomly initialized ma-
trices before averaging. All three works show that
performance increases as a concave function of em-
bedding size, when a linear model is used on top
of embeddings for evaluation.

We also observe this trend when we merely train
higher-dimensional word2vec word embeddings
(on Wikipedia) and then average them, see Fig-
ure 1. At equal embedding size, some models such
as USE and Sent2Vec, have no or very little ad-
vantage over average word embeddings. Therefore,
we strongly encourage future research to compare
embeddings of the same sizes to provide a fair eval-
uation (or at least similar sizes).

Cosine similarity and Pearson correlation may
give misleading results. The following evalua-
tion scenario is common when testing for semantic
similarity: given two inputs (words or sentences),
embed each of them, (i) compute the cosine simi-
larity of the pairs of vectors, and then (ii) calculate
the Pearson (or Spearman) correlation with human
judgments for the same pairs. Both steps are prob-
lematic: (i) it is unclear whether cosine similarity
is better suited to measure semantic similarity than
other similarity functions; (ii) Pearson correlation
is known for its deficiencies—e.g., it only measures
linear correlation and it is sensitive to outliers. A
popular example for failure of Pearson correlation
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Figure 1: Avg. score across 6 transfer tasks for differ-
ent sizes of Word2Vec embeddings vs. scores of other
encoders (with constant embedding sizes as given in
Table 1). ‘Word2Vec Normalized’ is discussed below.

is Anscombe’s quartet (Anscombe, 1973).
Indeed, using such unsupervised evaluations

based on cosine similarity and Pearson correla-
tion (which we denote UCP) may be misleading,
as pointed out by Lu et al. (2015). When they nor-
malized word embeddings, their WS353 semantic
similarity (Finkelstein et al., 2001) scores using
UCP increased by almost 20 percentage points (pp).
Since normalization is a simple operation that could
easily be learned by a machine learning model, this
indicates that UCP scores may yield unreliable con-
clusions regarding the quality of the underlying
embeddings.

We wanted to verify if this was also true when
comparing different sentence encoders, and there-
fore used the popular STSBenchmark dataset in the
UCP setup. The results in Table 2 show that the
outcomes vary strongly, with Glove-300d embed-
dings performing worst (0.41 correlation) and USE-
512d embeddings best (0.70 correlation). We then
normalized all sentence embeddings with z-norm1,
which is given as a recommendation in LeCun et al.
(1998) to process inputs for deep learning systems.

With normalization, we observe a reduction in
the range of the distribution of UCP scores across
the nine systems from 29% to 9%; similarly, the
standard deviation decreases from 8.6% to 2.4%.
In particular, the worst sentence encoders catch
up substantially: e.g., average Glove embeddings
improve from 0.41 Pearson to 0.62 Pearson and the
improvement of more complex systems over simple

1Subtracting the mean from each column of the embedding
matrix of the whole data (2N rows, one for each of N pairs,
and d columns, where d is the embedding size) and dividing
by the standard deviation; after that we normalized each row
to have unit length (`2 norm).

Standard Normalized ∆

Glove-300d 0.41 0.62 +21
Word2Vec-300d 0.56 0.65 +9
Word2Vec-800d 0.56 0.67 +11
InferSent-4096d 0.67 0.67 +0
SIF-Glove-300d 0.66 0.67 +1
SIF-Word2Vec-300d 0.67 0.67 +0
USE-512d 0.70 0.70 +0
Sent2Vec-700d 0.67 0.71 +4
PMean-3600d 0.64 0.66 +2

Table 2: Unsupervised cosine similarity + Pearson cor-
relation (UCP) on STSBench (test data). ∆ in pp.

averaging baselines appears much less pronounced
than before the normalization.

When replacing Pearson by Spearman correla-
tion, we observed very similar trends: e.g., Glove-
300d had 0.44 before and 0.58 after normalization.

This shows that that UCP requires specific nor-
malization of the inputs for a fair comparison. Par-
allel to the suggestion of Lu et al. (2015), we rec-
ommend considering to use learned similarity func-
tions and mean-square error (MSE) as an alterna-
tive to UCP.

Normalization. Indeed, we also evaluated the ef-
fect of normalization for supervised transfer tasks,
i.e., with learned similarity function. To this end,
we compared the 9 sentence encoders from Table 2
across 6 transfer tasks (averaged results) and STS-
Bench (learned similarity function on training data
instead of cosine similarity).2
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Figure 2: ∆ in pp of normalization and no normaliza-
tion. Average across transfer tasks. STSBench differ-
ences are scaled down by factor of 10.

2We estimated normalization vectors for mean and stan-
dard deviation on the training data and used these fixed values
to normalize the test data.
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Figure 2 shows that most techniques profit from
normalization (on average), both on the transfer
tasks and STSBench, even though gains are often
substantially smaller than in the UCP setting. Since
the normalization can lead to rank changes (which
we, e.g., observe between W2Vec-800, USE, and
Sent2Vec) we thus recommend introducing normal-
ization as a binary hyperparameter that is tuned
for each sentence encoder and downstream task
also in supervised settings with learned similarity
function.

Different classifiers for evaluation. The popu-
lar SentEval evaluation tool feeds sentence embed-
dings into a logistic regression classifier. The un-
derlying assumption is that in order to evaluate
the embeddings themselves the classifier used on
top of embeddings should be as simple as possible.
While the argument has some appeal, one wonders
how relevant such an evaluation is when in practice
more powerful classifiers would probably be used,
e.g., deeper networks (current versions of SentEval
also offer evaluating with a multi-layer perceptron
(MLP)). In particular, we note here an asymme-
try between the extrinsic evaluation of word and
sentence embeddings: word embeddings have tra-
ditionally been compared extrinsically by feeding
them into different powerful architectures, such as
BiLSTMs, while sentence embeddings are com-
pared using the simplest possible architecture, lo-
gistic regression. While this is cheaper and focuses
more on the embeddings themselves, it is less prac-
tically relevant, as discussed, and may have un-
desirable side effects, such as the preference for
embeddings of larger size.

A main problem arises when the ranking of sys-
tems is not stable across different classifiers. To
our knowledge, this is an open issue. We are only
aware of Subramanian et al. (2018), who evaluate a
few setups both with logistic regression and using
an MLP, and their results indicate that their own
approach profits much more from the MLP than
the InferSent embeddings they compare to (+3.4pp
vs. +2.2pp).

Thus, it is not sufficient to only report results
with logistic regression, and evaluations with better-
performing approaches would provide a more re-
alistic comparison for actual use-case scenarios.
We suggest reporting results for at least logistic
regression and MLP.

Correlation of transfer tasks and probing tasks.
Besides transfer tasks, the literature has recently
suggested evaluating sentence encoders with prob-
ing tasks (Conneau et al., 2018) that query em-
beddings for certain linguistic features, such as
to detect whether a sentence contains certain
words (WC) or to determine the sentence length
(SentLen). Perone et al. (2018) evaluate 11 differ-
ent sentence encoders on 9 transfer tasks and 10
probing tasks. We plot the Spearman correlation
between their transfer task results and their probing
task results in Figure 3. The average Spearman
correlation is 0.64. The highest average correlation
to transfer tasks has SentLen (0.83), and the low-
est score has WC (0.04). Taken at face value, this
may mean that current transfer tasks query more
for superficial sentence features (knowing that em-
bedding A can better predict sentence length than
embedding B is indicative that A outperforms B on
the transfer tasks) than for actual semantic content,
as the embeddings were originally designed for.
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Figure 3: Correlation of 11 sentence encoders on trans-
fer tasks (y-axis) and probing tasks (x-axis) in Perone
et al. (2018).

Thus, future research might focus on more suit-
able (difficult) datasets and sentence classification
tasks for the evaluation of sentence embeddings, a
lesson already learned in other fields (Läubli et al.,
2018; Yu et al., 2018).

Importantly, depending on the set of evaluated
sentence encoders, such correlations can yield con-
tradictory outcomes. For example, Conneau et al.
(2018) evaluate more than 40 combinations of sim-
ilar sentence encoder architectures and observe the
strongest correlation with downstream task perfor-
mances for WC (cf. their figure 2). This is in con-
trast to the correlations from the results of Perone
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et al. (2018), where WC had the lowest correlation.
Thus, it remains unclear to which extent downstram
tasks benefit from the different properties that are
defined by many probing tasks.

4 Conclusion

Others have laid out problems with the evaluation
of word embeddings (Faruqui et al., 2016) using
word similarity tasks. They referred to the vague-
ness of the data underlying the tasks (as well as
its annotations), the low correlations between ex-
trinsic and intrinsic evaluations, and the lack of
statistical tests. Our critique differs (in part) from
this in that we also address extrinsic evaluation and
the evaluation techniques themselves,3 and in that
we believe that the comparison between sentence
embeddings is not always fair, especially given the
current evaluations using logistic regression. This
implicitly favors larger embeddings, and may there-
fore result in misleading conclusions regarding the
superiority of different encoders.

As practical recommendations, we encourage
future research in sentence embeddings to (1) com-
pare embeddings of the same size; (2) treat nor-
malization as a further hyperparameter; and (3) use
multiple classifiers during evaluation, i.e., at least
logistic regression and an MLP. We recommend
against using unsupervised cosine+Pearson evalu-
ations but instead to use a learned similarity func-
tion, and to report MSE as an alternative to Pear-
son/Spearman correlations. If unsupervised eval-
uation is unavoidable, normalization is even more
important. Finally, we think that current transfer
tasks for sentence embeddings should be comple-
mented by more challenging ones for which bag-of-
words models or random projection models cannot
as easily compete.
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Abstract

We propose a novel model architecture and
training algorithm to learn bilingual sentence
embeddings from a combination of parallel
and monolingual data. Our method connects
autoencoding and neural machine translation
to force the source and target sentence embed-
dings to share the same space without the help
of a pivot language or an additional trans-
formation. We train a multilayer perceptron
on top of the sentence embeddings to extract
good bilingual sentence pairs from nonparallel
or noisy parallel data. Our approach shows
promising performance on sentence align-
ment recovery and the WMT 2018 parallel
corpus filtering tasks with only a single model.

1 Introduction

Data crawling is increasingly important in ma-
chine translation (MT), especially for neural net-
work models. Without sufficient bilingual data,
neural machine translation (NMT) fails to learn
meaningful translation parameters (Koehn and
Knowles, 2017). Even for high-resource language
pairs, it is common to augment the training data
with web-crawled bilingual sentences to improve
the translation performance (Bojar et al., 2018).

Using crawled data in MT typically involves
two core steps: mining and filtering. Mining
parallel sentences, i.e. aligning source and tar-
get sentences, is usually done with lots of heuris-
tics and features: document/URL meta infor-
mation (Resnik and Smith, 2003; Esplá-Gomis
and Forcada, 2009), sentence lengths with self-
induced lexicon (Moore, 2002; Varga et al., 2005;
Etchegoyhen and Azpeitia, 2016), word alignment
statistics and linguistic tags (S. tefănescu et al.,
2012; Kaufmann, 2012).

Filtering aligned sentence pairs also often in-
volves heavy feature engineering (Taghipour et al.,

2011; Xu and Koehn, 2017). Most of the partici-
pants in the WMT 2018 parallel corpus filtering
task use large-scale neural MT models and lan-
guage models as the features (Koehn et al., 2018).

Bilingual sentence embeddings can be an ele-
gant and unified solution for parallel corpus min-
ing and filtering. They compress the information
of each sentence into a single vector, which lies
in a shared space between source and target lan-
guages. Scoring a source-target sentence pair is
done by computing similarity between the source
embedding vector and the target embedding vec-
tor. It is much more efficient than scoring by de-
coding, e.g. with a translation model.

Bilingual sentence embeddings have been stud-
ied primarily for transfer learning of monolingual
downstream tasks across languages (Hermann and
Blunsom, 2014; Pham et al., 2015; Zhou et al.,
2016). However, few papers apply it to bilin-
gual corpus mining; many of them require paral-
lel training data with additional pivot languages
(Espana-Bonet et al., 2017; Schwenk, 2018) or
lack an investigation into similarity between the
embeddings (Guo et al., 2018).

This work solves these issues as follows:

• We propose a simple end-to-end training
approach of bilingual sentence embeddings
with parallel and monolingual data only of
the corresponding language pair.

• We use a multilayer perceptron (MLP) as a
trainable similarity measure to match source
and target sentence embeddings.

• We compare various similarity measures for
embeddings in terms of score distribution,
geometric interpretation, and performance in
downstream tasks.

• We demonstrate competitive performance in
sentence alignment recovery and parallel cor-
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pus filtering tasks without a complex combi-
nation of translation/language models.

• We analyze the effect of negative examples
on training an MLP similarity, using different
levels of negativity.

2 Related Work

Bilingual representation of a sentence was at first
built by averaging pre-trained bilingual word em-
beddings (Huang et al., 2012; Klementiev et al.,
2012). The compositionality from words to sen-
tences is integrated into end-to-end training in
Hermann and Blunsom (2014).

Explicit modeling of a sentence-level bilingual
embedding was first discussed in Chandar et al.
(2013), training an autoencoder on monolingual
sentence embeddings of two languages. Pham
et al. (2015) jointly learn bilingual sentence and
word embeddings by feeding a shared sentence
embedding to n-gram models. Zhou et al. (2016)
add document-level alignment information to this
model as a constraint in training.

Recently, sequence-to-sequence NMT models
were adapted to learn cross-lingual sentence em-
beddings. Schwenk and Douze (2017) connect
multiple source encoders to a shared decoder of
a pivot target language, forcing the consistency of
encoder representations. Schwenk (2018) extend
this work to use a single encoder for many source
languages. Both methods rely on N -way parallel
training data, which are seriously limited to cer-
tain languages and domains. Artetxe and Schwenk
(2018b) relax this data condition to pairwise paral-
lel data including the pivot language, but it is still
unrealistic for many scenarios (see Section 4.2).
In contrast, our method needs only parallel and
monolingual data for source and target languages
of concern without any pivot languages.

Hassan et al. (2018) train a bidirectional NMT
model with a single encoder-decoder, taking the
average of top-layer encoder states as the sentence
embedding. They do not include any details on the
data or translation performance before/after the fil-
tering with this embedding. Junczys-Dowmunt
(2018) apply this method to WMT 2018 paral-
lel corpus filtering task, yet showing significantly
worse performance than a combination of trans-
lation/language models. Our method shows com-
parable results to such model combinations in the
same task.

Guo et al. (2018) replace the decoder with a

feedforward network and use the parallel sen-
tences as input to the two encoders. Similarly to
our work, the feedforward network measures the
similarity of sentence pairs, except that the source
and target sentence embeddings are combined via
dot product instead of concatenation. Their model,
however, is not directly optimizing the source and
target sentences to be translations of each other;
it only attaches two encoders in the output level
without a decoder.

Based on the model of Artetxe and Schwenk
(2018b), Artetxe and Schwenk (2018a) scale
cosine similarity between sentence embeddings
with average similarity of the nearest neighbors.
Searching for the nearest neighbors among hun-
dreds of millions of sentences may cause a huge
computational problem. On the other hand, our
similarity calculation is much quicker and support
batch computation while preserving strong perfor-
mance in parallel corpus filtering.

Neither of the above-mentioned methods utilize
monolingual data. We integrate autoencoding into
NMT to maximize the usage of parallel and mono-
lingual data together in learning bilingual sentence
embeddings.

3 Bilingual Sentence Embeddings

A bilingual sentence embedding function maps
sentences from both the source and target lan-
guage into a single joint vector space. Once we
obtain such a space, we can search for a similar
target sentence embedding given a source sentence
embedding, or vice versa.

3.1 Model

In this work, we learn bilingual sentence embed-
dings via NMT and autoencoding given parallel
and monolingual corpora. Since our purpose is
to pair source and target sentences, translation is
a natural base task to connect sentences in two
different languages. We adopt a basic encoder-
decoder approach from Sutskever et al. (2014).
The encoder produces a fixed-length embedding
of a source sentence, which is used by the decoder
to generate the target hypothesis.

First, the encoder takes a source sentence fJ1 =
f1, ..., fj , ..., fJ (length J) as input, where each fj
is a source word. It computes hidden representa-
tions hj ∈ RD for all source positions j:

hJ1 = encsrc(f
J
1 ) (1)
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Figure 1: Our proposed model for learning bilingual
sentence embeddings. A decoder (above) is shared over
two encoders (below). The decoder accepts a max-
pooled representation from either one of the encoders
as its first state s0, depending on the training objective
(Equation 7 and 8).

encsrc is implemented as a bidirectional recurrent
neural network (RNN). We denote a target output
sentence by eI1 = e1, ..., ei, ..., eI (length I). The
decoder is an unidirectional RNN whose internal
state for a target position i is:

si = dec(si−1, ei−1) (2)

where its initial state is element-wise max-pooling
of the encoder representations hJ1 :

s0 = maxpool(hJ1 )

=

[
max

j=1,...,J
hj1, ... , max

j=1,...,J
hjD

]>
(3)

We empirically found that the max-pooling per-
forms much better than averaging or choosing the
first (h1) or last (hJ ) representation. Finally, an
output layer predicts a target word ei:

pθ(ei|ei−11 , fJ1 ) = softmax(linear(si)) (4)

where θ denotes a set of model parameters.
Note that the decoder has access to the source

sentence only through s0, which we take as the
sentence embedding of fJ1 . This assumes that
the source sentence embedding contains sufficient
information for translating to a target sentence,
which is desired for a bilingual embedding space.

However, this plain NMT model can generate
only source sentence embeddings through the en-
coder. The decoder cannot process a new target

sentence without a proper source language input.
We can perform decoding with an empty source
input and take the last decoder state sI as the
sentence embedding of eI1, but it is not compati-
ble with the source embedding and contradicts the
way in which the model is trained.

Therefore, we attach another encoder of the tar-
get language to the same (target) decoder:

h̄I1 = enctgt(e
I
1) (5)

s0 =

[
max
i=1,...,I

h̄i1, ... , max
i=1,...,I

h̄iD

]>
(6)

enctgt has the same architecture as encsrc. The
model has now an additional information flow
from a target input sentence to the same target
(output) sentence, also known as sequential au-
toencoder (Li et al., 2015).

Figure 1 is a diagram of our model. A decoder
is shared between NMT and autoencoding parts; it
takes either source or target sentence embedding
and does not differentiate between the two when
producing an output. The two encoders are con-
strained to provide mathematically consistent rep-
resentations over the languages (to the decoder).

Note that our model does not have any attention
component (Bahdanau et al., 2014). The atten-
tion mechanism in NMT makes the decoder attend
to encoder representations at all source positions.
This is counterintuitive for our purpose; we need
to optimize the encoder to produce a single rep-
resentation vector, but the attention model allows
the encoder to distribute information over many
different positions. In our initial experiments, the
same model with the attention mechanism showed
exorbitantly bad performance, so we removed it in
the main experiments of Section 4.

3.2 Training and Inference

Let θencsrc , θenctgt , and θdec the parameters of
the source encoder, the target encoder, and the
(shared) decoder, respectively. Given a paral-
lel corpus P and a target monolingual corpus
Mtgt, the training criterion of our model is the
cross-entropy on two input-output paths. The
NMT objective (Equation 7) is for training θ1 =
{θencsrc , θdec}, and the autoencoding objective
(Equation 8) is for training θ2 = {θenctgt , θdec}:

Lemb(θ) = −
∑

(fJ1 ,e
I
1)∈P

log pθ1(eI1|fJ1 ) (7)
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−
∑

eI1∈Mtgt

log pθ2(eI1|eI1) (8)

where θ = {θ1, θ2}. During the training, each
mini-batch contains examples of the both objec-
tives with a 1:1 ratio. In this way, we prevent
one encoder from being optimized more than the
other, forcing the two encoders produce balanced
sentence embeddings that fit to the same decoder.

The autoencoding part can be trained with a
separate target monolingual corpus. To provide a
stronger training signal for the shared embedding
space, we use also the target side of P; the model
learns to produce the same target sentence from
the corresponding source and target inputs.

In order to guide the training to bilingual repre-
sentations, we initialize the word embedding lay-
ers with a pre-trained bilingual word embedding.
The word embedding for each language is trained
with a skip-gram algorithm (Mikolov et al., 2013),
later mapped across the languages with adversarial
training (Conneau et al., 2018) and self-dictionary
refinements (Artetxe et al., 2017).

Our model can be built also in the opposite di-
rection, i.e. with a target-to-source NMT model
and a source autoencoder:

Lemb(θ) = −
∑

(fJ1 ,e
I
1)∈P

log pθ2(fJ1 |eI1) (9)

−
∑

fJ1 ∈Msrc

log pθ1(fJ1 |fJ1 ) (10)

Once the model is trained, we need only the en-
coders to query sentence embeddings. Let a and
b be embeddings of a source sentence fJ1 and a
target sentence eI1, respectively:

a = maxpool(encsrc(f
J
1 )) (11)

b = maxpool(enctgt(e
I
1)) (12)

3.3 Computing Similarities
The next step is to evaluate how close the two em-
beddings are to each other, i.e. to compute a sim-
ilarity measure between them. In this paper, we
consider two types of similarity measures.

Predefined mathematical functions Cosine
similarity is a conventional choice for measuring
the similarity in vector space modeling of infor-
mation retrieval or text mining (Singhal, 2001). It
computes the angle between two vectors (rotation)
and ignore the lengths:

cos(a,b) =
a · b
‖a‖‖b‖ (13)

Euclidean distance indicates how much distance
must be traveled to move from the end of a vector
to that of the other (transition). We reverse this
distance to use it as a similarity measure:

Euclidean(a,b) = −‖a− b‖ (14)

However, these simple measures, i.e. a single
rotation or transition, might not be sufficient to
define the similarity of complex natural language
sentences across different languages. Also, the
learned joint embedding space is not necessarily
perfect in the sense of vector space geometry; even
if we train it with a decent algorithm, the structure
and quality of the embedding space are highly de-
pendent on the amount of parallel training data and
its domain. This might hinder the simple functions
from working well for our purpose.

Trainable multilayer perceptron To model re-
lations of sentence embeddings by combining ro-
tation, shift, and even nonlinear transformations,
We train a small multilayer perceptron (MLP)
(Bishop et al., 1995) and use it as a similarity mea-
sure. We design the MLP network q(a,b) as a
simple binary classifier whose input is a concate-
nation of source and target sentence embeddings:
[a;b]>. It is passed through feedforward hidden
layers with nonlinear activations. The output layer
has a single node with sigmoid activation, repre-
senting how probable the source and target sen-
tences are translations of each other.

To train this model, we must have positive ex-
amples (real parallel sentence pairs, Ppos) and
negative examples (nonparallel or noisy sentence
pairs, Pneg). The training criterion is:

Lsim = −
∑

(a,b)∈Ppos

log q(a,b)

−
∑

(a,b)∈Pneg

(1− log q(a,b)) (15)

which naturally fits to the main task of interest:
parallel corpus filtering (Section 4.2). Note that
the output of the MLP can be quite biased to the
extremes (0 or 1) in order to clearly distinguish
good and bad examples. This has both advantages
and disadvantages as explained in Section 5.1.

Our MLP similarity can be optimized differ-
ently for each embedding space. Furthermore, the
user can inject domain-specific knowledge into the
MLP similarity by training only with in-domain
parallel data. The resulting MLP would devalue
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not only nonparallel sentence pairs but also out-
of-domain instances.

4 Evaluation

We evaluated our bilingual sentence embedding
and the MLP similarity on two tasks: sentence
alignment recovery and parallel corpus filtering.
The sentence embedding was trained with WMT
2018 English-German parallel data and 100M
German sentences from the News Crawl mono-
lingual data1, where we use German as the au-
toencoded language. All sentences were lower-
cased and limited to the length of 60. We learned
the byte pair encoding (Sennrich et al., 2016)
jointly for the two languages with 20k merge oper-
ations. We pre-trained bilingual word embeddings
on 100M sentences from the News Crawl data
for each language using FASTTEXT (Bojanowski
et al., 2017) and MUSE (Conneau et al., 2018).

Our sentence embedding model has 1-layer
RNN encoder/decoder, where the word embed-
ding and hidden layers have a size of 512. The
training was done with stochastic gradient descent
with initial learning rate of 1.0, batch size of 120
sentences, and maximum 800k updates. After
100k updates, we reduced the learning rate by a
factor of 0.9 for every 50k updates.

Our MLP similarity model has 2 hidden lay-
ers of size 512 with ReLU (Nair and Hinton,
2010), trained with SCIKIT-LEARN (Pedregosa
et al., 2011) with maximum 1,000 updates. For a
positive training set, we used newstest2007-2015
from WMT (around 21k sentences). Unless other-
wise noted, we took a comparable size of negative
examples from the worst-scored sentence pairs of
ParaCrawl2 English-German corpus. The scoring
was done with our bilingual sentence embedding
and cosine similarity.

Note that the negative examples are selected via
cosine similarity but the similarity values are not
used in the MLP training (Equation 15). Thus
it does not learn to mimic the cosine similarity
function again, but has a new sorting of sentence
pairs—also encoding the domain information.

4.1 Sentence Alignment Recovery

In this task, we corrupt the sentence alignments of
a parallel test set by shuffling one side, and find

1http://www.statmt.org/wmt18/translation-task.html
2https://www.paracrawl.eu/

the original alignments; also known as corpus re-
construction (Schwenk and Douze, 2017).

Given a source sentence, we compute a simi-
larity score with every possible target sentence in
the data and take the top-scored one as the align-
ment. The error rate is the number of incorrect
sentence alignments divided by the total number
of sentences. We compute this also in the oppo-
site direction and take an average of the two error
rates. It is an intrinsic evaluation for parallel cor-
pus mining. We choose two test sets: WMT new-
stest2018 (2998 lines) and IWSLT tst2015 (1080
lines).

As baselines, we used character-level Leven-
shtein distance and length-normalized posterior
scores of German→English/English→German
NMT models. Each NMT model is a 3-layer base
Transformer (Vaswani et al., 2017) trained on the
same training data as the sentence embedding.

Error [%]

Method WMT IWSLT

Levenshtein distance 37.4 54.6
NMT de-en + en-de 1.7 13.3

Our method (Cosine similarity) 4.3 13.8
Our method (MLP similarity) 89.9 72.6

Table 1: Sentence alignment recovery results. Our
method results use cosine similarity except the last row.

Table 1 shows the results. The Levenshtein dis-
tance gives a poor performance. NMT models
are better than the other methods, but takes too
long to compute posteriors for all possible pairs
of source and target sentences (about 12 hours for
the WMT test set). This is absolutely not feasible
for a real mining task with hundreds of millions of
sentences.

Our bilingual sentence embeddings (with us-
ing cosine similarity) show error rates close to the
NMT models, especially in the IWSLT test set.
Computing similarities between embeddings is ex-
tremely fast (about 3 minutes for the WMT test
set), which perfectly fits to mining scenarios.

However, the MLP similarity performs bad in
aligning sentence pairs. Given a source sentence,
it puts all reasonably similar target sentences to the
score 1 and does not precisely distinguish between
them. Detailed investigation of this behavior is in
Section 5.1. As we will find out, this is ironically
very effective in parallel corpus filtering.
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BLEU [%]
10M words 100M words

Method test2017 test2018 test2017 test2018

Random sampling 19.1 23.1 23.2 29.3
Pivot-based embedding (Schwenk and Douze, 2017) 26.1 32.4 30.0 37.5
NMT + LM, 4 models (Rossenbach et al., 2018) 29.1 35.2 31.3 38.2

Our method (cosine similarity) 23.0 28.4 27.9 34.4
Our method (MLP similarity) 29.2 35.4 30.6 37.5

Table 2: Parallel corpus filtering results (German→English).

4.2 Parallel Corpus Filtering

We also test our methods in the WMT 2018 paral-
lel corpus filtering task (Koehn et al., 2018).

Data The task is to score each line of a very
noisy, web-crawled corpus of 104M parallel lines
(ParaCrawl English-German). We pre-filtered the
given raw corpus with the heuristics of Rossen-
bach et al. (2018). Only the data for WMT 2018
English-German news translation task is allowed
to train scoring models. The evaluation procedure
is: subsample top-scored lines which amounts to
10M/100M words, train a small NMT model with
the subsampled data, and check its translation per-
formance. We follow the official pipeline except
that we train 3-layer Transformer NMT model us-
ing Sockeye (Hieber et al., 2017) for evaluation.

Baselines We have three comparative baselines:
1) random sampling, 2) bilingual sentence em-
bedding learned with a third pivot target lan-
guage (Schwenk and Douze, 2017), 3) combina-
tion of source-to-target/target-to-source NMT and
source/target LM (Rossenbach et al., 2018), a top-
ranked system in the official evaluation.

Note that the second method violates the of-
ficial data condition of the task since it requires
parallel data in German-Pivot and English-Pivot.
This method is not practical when learning mul-
tilingual embeddings for English and other lan-
guages, since it is hard to collect pairwise parallel
data involving a non-English pivot language (ex-
cept among European languages). We trained this
method with N -way parallel UN corpus (Ziemski
et al., 2016) with French as the pivot language.
The size of this model is the same as that of our
autoencoding-based model except the word em-
bedding layers.

The results are shown in Table 2, where cosine

similarity was used by default for sentence embed-
ding methods except the last row. Pivot-based sen-
tence embedding (Schwenk and Douze, 2017) im-
proves upon the random sampling, but it has an
impractical data condition. The four-model com-
bination of NMT models and LMs (Rossenbach
et al., 2018) provide 1-3% more BLEU improve-
ment. Note that, for the third method, each model
costs 1-2 weeks to train.

Our bilingual sentence embedding method
greatly improves over the random sampling base-
line up to 5.3% BLEU in the 10M-word case and
5.1% BLEU in the 100M-word case. With our
MLP similarity, the improvement in BLEU is up
to 12.3% and 8.2% in the 10M-word case and the
100M-word case, respectively. It outperforms the
pivot-based embedding method significantly and
gets close to the performance of the four-model
combination. Note that we use only a single model
trained with only given parallel/monolingual data
for the corresponding language pair, i.e. English-
German. In contrast to sentence alignment recov-
ery experiments, the MLP similarity boosts the fil-
tering performance by a large margin.

5 Analysis

In this section, we provide more in-depth analyses
to compare 1) various similarity measures and 2)
different choices of the negative training set for the
MLP similarity model.

5.1 Similarity Measures
In Table 3, we compare sentence alignment re-
covery performance with different similarity mea-
sures.

Euclidean distance shows a worse performance
than cosine similarity. This means that in a sen-
tence embedding space, we should consider ro-
tation more than transition when comparing two
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Error [%]
Similarity de-en en-de Average

Euclidean 7.9 99.8 53.8
Cosine 4.3 4.2 4.3
CSLS 1.9 2.2 2.1
MLP 85.0 94.8 89.9

Table 3: Sentence alignment recovery results with dif-
ferent similarity measures (newstest2018).

vectors. Particularly, the English→German direc-
tion has a peculiarly bad result with Euclidean dis-
tance. This is due to a hubness problem in a high-
dimensional space, where some vectors are highly
likely to be nearest neighbors of many others.

a1
a2

a3

a4

b1
b2

b3

b4

Figure 2: Schematic diagram of the hubness problem.
Filled circles indicate German sentence embeddings,
while empty circles denote English sentence embed-
dings. All embeddings are assumed to be normalized.

Figure 2 illustrates that Euclidean distance is
more prone to the hubs than cosine similarity. As-
sume that German sentence embeddings an and
English sentence embeddings bn should match to
each other with the same index n, e.g. (a1,b1)
is a correct match. With cosine similarity, the
nearest neighbor of an is always bn for all n =
1, ..., 4 and vice versa, considering only the an-
gles between the vectors. However, when us-
ing Euclidean distance, there is a discrepancy be-
tween German→English and English→German
directions: The nearest neighbor of each an is
bn, but the nearest neighbor of all bn is always
a4. This leads to a serious performance drop only
in English→German. The figure is depicted in a
two-dimensional space for simplicity, but the hub-
ness problem becomes worse for an actual high-
dimensional space of sentence embeddings.

Cross-domain similarity local scaling (CSLS) is
developed to counteract the hubness problem by

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

sentence index (×107)

si
m

ila
ri

ty
sc

or
e

(a) Cosine similarity
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(b) MLP similarity

Figure 3: The score distribution of similarity measures.
The sentences are sorted by their similarity scores. Co-
sine similarity values are linearly rescaled to [0, 1].

penalizing similarity values in dense areas of the
embedding distribution (Conneau et al., 2018):

CSLS(a,b) = 2 · cos(a,b) (16)

− 1

K

∑

b′∈NN(a)

cos(a,b′) (17)

− 1

K

∑

a′∈NN(b)

cos(a′,b) (18)

where K is the number of nearest neighbors.
CSLS outperforms cosine similarity in our exper-
iments. For a large-scale mining scenario, how-
ever, the measure requires heavy computations for
the penalty terms (Equation 17 and 18), i.e. near-
est neighbor search in all combinations of source
and target sentences and sorting the scores over
e.g. a few hundred million instances.

The MLP similarity is not performing well as
opposed to its results in parallel corpus filtering.
To explain this, we depict score distributions of
cosine and MLP similarity over the ParaCrawl cor-
pus in Figure 3. As for cosine similarity, only

67



Similarity

German sentence English sentence Cosine MLP

the requested URL / dictionary / m /
mar eisimpleir.htm was not found on
this server.

additionally, a 404 Not Found error was
encountered while trying to use an Er-
rorDocument to handle the request.

0.185 0.000

becoming Prestigious In The Right Way how I Feel About School 0.199 0.000

nach dieser Aussage sollte die türkische
Armee somit eine internationale Inter-
vention gegen Syrien provozieren .

according to his report, the Turkish
army was aiming to provoke an inter-
national intervention against Syria.

0.563 1.000

allen Menschen und Beschäftigten, die
um Freiheit kämpfen oder bei Kundge-
bungen ums Leben kamen, Achtung
zu bezeugen und die unverzügliche
Freilassung aller Inhaftierten zu fordern

to pay tribute to all people and work-
ers who have been fighting for freedom
or fallen in demonstrations and demand
the immediate release of all detainees

0.427 0.999

Table 4: Example sentence pairs in the ParaCrawl corpus (Section 4.2) with their similarity values.

a small fraction of the corpus is given low- or
high-range scores (smaller than 0.2 or larger than
0.6). The remaining sentences are distributed al-
most uniformly within the score range inbetween.

The distribution curve of the MLP similarity has
a completely different shape. It has a strong ten-
dency to classify a sentence pair to be extremely
bad or extremely good: nearly 80% of the corpus
is scored with zero and only 3.25% gets scores be-
tween 0.99 and 1.0. Table 4 shows some example
sentence pairs with extreme MLP similarity val-
ues.

This is the reason why the MLP similarity does
a good job in filtering, especially in selecting a
small portion (10M-word) of good parallel sen-
tences. Table 4 compares cosine similarities and
the MLP scores for some sentence pairs in the raw
corpus for our filtering task (Section 4.2). The
first two sentence pairs are absolutely nonparallel;
both similarity measures give low scores, while
the MLP similarity emphasizes the bad quality
with zero scores. The third example is a decent
parallel sentence pair with a minor ambiguity, i.e.
his in English can be a translation of dieser in Ger-
man or not, depending on the document-level con-
text. Both measures see this sentence pair as a pos-
itive example.

The last example is parallel but the translation
involves severe reordering: long-distance changes
in verb positions, switching the order of relative
clauses, etc. Here, cosine similarity has trouble
in rating this case highly even if it is perfectly

parallel, eventually filtering it out from the train-
ing data. On the other hand, our MLP similarity
correctly evaluates this difficult case by giving a
nearly perfect score.

However, the MLP is not optimized for precise
differentiation among the good parallel matches.
It is thus not appropriate for sentence alignment
recovery that requires exact 1-1 matching of po-
tential source-target pairs. A steep drop in the
curve of Figure 3b also explains why it performs
slightly inferior to the best system in the 100M-
word filtering task (Table 2). The subsampling ex-
ceeds the dropping region and includes many zero-
scored sentence pairs, where the MLP similarity
cannot measure the quality well.

5.2 Negative Training Examples
In the MLP similarity training, we can use pub-
licly available parallel corpora as the positive sets.
For the negative sets, however, it is not clear which
dataset we should use: entirely nonparallel sen-
tences, partly parallel sentences, or sentence pairs
of quality inbetween. We experimented with nega-
tive examples of different quality in Table 5. Here
is how we vary the negativity:

1. Score the sentence pairs of the ParaCrawl
corpus with our bilingual sentence embed-
ding using cosine similarity.

2. Sort the sentence pairs by the scores.

3. Divide the sorted corpus into five portions by
top-scored cut of 20%, 40%, 60%, 80%, and
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Negative examples BLEU [%]

Random sampling 33.3

20% worst 29.9
40% worst 33.3
60% worst 33.7
80% worst 32.1
100% worst 25.7

Table 5: Parallel corpus filtering results (10M-word
task) with different negative sets for training MLP sim-
ilarity (newstest2016, i.e. the validation set).

100%.

4. Take the last 100k lines for each portion.

A negative set from the 20%-worst part stands
for relatively less problematic sentence pairs, in-
tending for elaborate classification among perfect
parallel sentences (positive set) and almost perfect
ones. With the 100%-worst examples, we focus
on removing absolutely nonsense pairing of sen-
tences. As a simple baseline, we also take 100k
sentences randomly without scoring, representing
mixed levels of negativity.

The results in Table 5 show that a moderate
level of negativity (60%-worst) is most suitable
for training an MLP similarity model. If the neg-
ative set contains too many excellent examples,
the model may mark acceptable parallel sentence
pairs with zero scores. If the negative set con-
sists only of certainly nonparallel sentence pairs,
the model is weak in discriminating mid-quality
instances, some of which are crucial to improve
the translation system.

Random selection of sentence pairs also works
surprisingly well compared to carefully tailored
negative sets. It does not require us to score and
sort the raw corpus, so it is very efficient, sacrific-
ing performance slightly. We hypothesize that the
average negative level of this random set is also
moderate and similar to that of the 60%-worst.

6 Conclusion

In this work, we present a simple method to
train bilingual sentence embeddings by combin-
ing vanilla RNN NMT (without attention compo-
nent) and sequential autoencoder. By optimizing a
shared decoder with combined training objectives,
we force the source and target sentence embed-
dings to share their space. Our model is trained

with parallel and monolingual data of the corre-
sponding language pair, with neither pivot lan-
guages nor N -way parallel data. We also propose
to use a binary classification MLP as a similarity
measure for matching source and target sentence
embeddings.

Our bilingual sentence embeddings show con-
sistently strong performance in both sentence
alignment recovery and the WMT 2018 parallel
corpus filtering tasks with only a single model. We
compare various similarity measures for bilingual
sentence matching, verifying that cosine similarity
is preferred for a mining task and our MLP simi-
larity is very effective in a filtering task. We also
show that a moderate level of negativity is appro-
priate for training the MLP similarity, using either
random examples or mid-range scored examples
from a noisy parallel corpus.

Future work would be regularizing the MLP
training to obtain a smoother distribution of the
similarity scores, which could supplement the
weakness of the MLP similarity (Section 5.1).
Furthermore, we plan to adjust our learning pro-
cedure towards the downstream tasks, e.g. with an
additional training objective to maximize the co-
sine similarity between the source and target en-
coders (Arivazhagan et al., 2019). Our method
should be tested also on many other language pairs
which do not have parallel data involving a pivot
language.
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Abstract

Semantic specialization methods fine-tune dis-
tributional word vectors using lexical knowl-
edge from external resources (e.g., WordNet)
to accentuate a particular relation between
words. However, such post-processing meth-
ods suffer from limited coverage as they af-
fect only vectors of words seen in the ex-
ternal resources. We present the first post-
processing method that specializes vectors of
all vocabulary words – including those un-
seen in the resources – for the asymmetric rela-
tion of lexical entailment (LE) (i.e., hyponymy-
hypernymy relation). Leveraging a partially
LE-specialized distributional space, our POS-
TLE (i.e., post-specialization for LE) model
learns an explicit global specialization func-
tion, allowing for specialization of vectors
of unseen words, as well as word vectors
from other languages via cross-lingual trans-
fer. We capture the function as a deep feed-
forward neural network: its objective re-scales
vector norms to reflect the concept hierarchy
while simultaneously attracting hyponymy-
hypernymy pairs to better reflect semantic sim-
ilarity. An extended model variant augments
the basic architecture with an adversarial dis-
criminator. We demonstrate the usefulness and
versatility of POSTLE models with different in-
put distributional spaces in different scenarios
(monolingual LE and zero-shot cross-lingual
LE transfer) and tasks (binary and graded LE).
We report consistent gains over state-of-the-art
LE-specialization methods, and successfully
LE-specialize word vectors for languages with-
out any external lexical knowledge.

1 Introduction

Word-level lexical entailment (LE), also known as
the TYPE-OF or hyponymy-hypernymy relation, is
a fundamental asymmetric lexico-semantic relation
(Collins and Quillian, 1972; Beckwith et al., 1991).

∗Both authors contributed equally to this work.

The set of these relations constitutes a hierarchi-
cal structure that forms the backbone of semantic
networks such as WordNet (Fellbaum, 1998). Au-
tomatic reasoning about word-level LE benefits a
plethora of tasks such as natural language inference
(Dagan et al., 2013; Bowman et al., 2015; Williams
et al., 2018), text generation (Biran and McKeown,
2013), metaphor detection (Mohler et al., 2013),
and automatic taxonomy creation (Snow et al.,
2006; Navigli et al., 2011; Gupta et al., 2017).

However, standard techniques for inducing word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014; Melamud et al., 2016; Bojanowski
et al., 2017; Peters et al., 2018, inter alia) are un-
able to effectively capture LE. Due to their crucial
dependence on contextual information and the dis-
tributional hypothesis (Harris, 1954), they display
a clear tendency towards conflating different rela-
tionships such as synonymy, antonymy, meronymy
and LE and broader topical relatedness (Schwartz
et al., 2015; Mrkšić et al., 2017).

To mitigate this deficiency, a standard solution
is a post-processing step: distributional vectors are
gradually refined to satisfy linguistic constraints
extracted from external resources such as Word-
Net (Fellbaum, 1998) or BabelNet (Navigli and
Ponzetto, 2012). This process, termed retrofitting
or semantic specialization, is beneficial to language
understanding tasks (Faruqui, 2016; Glavaš and
Vulić, 2018) and is extremely versatile as it can be
applied on top of any input distributional space.

Retrofitting methods, however, have a major
weakness: they only locally update vectors of
words seen in the external resources, while leaving
vectors of all other unseen words unchanged, as
illustrated in Figure 1. Recent work (Glavaš and
Vulić, 2018; Ponti et al., 2018) has demonstrated
how to specialize the full distributional space for
the symmetric relation of semantic (dis)similarity.
The so-called post-specialization model learns a
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Source 
 Lang

Target 
 Lang

1. Initial LE specialization

Distributional word vectors
LE-specialized word vectors

2a. POSTLE: LE specialization 
of all words in the source lang

2b. POSTLE: LE specialization 
of all words in the target lang

Figure 1: High-level overview of a) the POSTLE full vo-
cabulary specialization process; and b) zero-shot cross-
lingual specialization for LE. This relies on an initial
shared cross-lingual word embedding space (see §2).

global and explicit specialization function that im-
itates the transformation from the distributional
space to the retrofitted space, and applies it to the
large subspace of unseen words’ vectors.

In this work, we present POSTLE, an all-words
post-specialization model for the asymmetric LE

relation. This model propagates the signal on the
hierarchical organization of concepts to the ones
unseen in external resources, resulting in a word
vector space which is fully specialized for the LE re-
lation. Previous LE specialization methods simply
integrated available LE knowledge into the input
distributional space (Vulić and Mrkšić, 2018), or
provided means to learn dense word embeddings
of the external resource only (Nickel and Kiela,
2017, 2018; Ganea et al., 2018; Sala et al., 2018).
In contrast, we show that our POSTLE method can
combine distributional and external lexical knowl-
edge and generalize over unseen concepts.

The main contribution of POSTLE is a novel
global transformation function that re-scales vector
norms to reflect the concept hierarchy while simul-
taneously attracting hyponymy-hypernymy word
pairs to reflect their semantic similarity in the spe-
cialized space. We propose and evaluate two vari-
ants of this idea. The first variant learns the global
function through a deep non-linear feed-forward
network. The extended variant leverages the deep
feed-forward net as the generator component of an
adversarial model. The role of the accompanying
discriminator is then to distinguish between origi-
nal LE-specialized vectors (produced by any initial
post-processor) from vectors produced by trans-
forming distributional vectors with the generator.

We demonstrate that the proposed POSTLE meth-
ods yield considerable gains over state-of-the-art
LE-specialization models (Nickel and Kiela, 2017;
Vulić and Mrkšić, 2018), with the adversarial vari-
ant having an edge over the other. The gains are

observed with different input distributional spaces
in several LE-related tasks such as hypernymy de-
tection and directionality, and graded lexical entail-
ment. What is more, the highest gains are reported
for resource-lean data scenarios where a high per-
centage of words in the datasets is unseen.

Finally, we show how to LE-specialize distribu-
tional spaces for target languages that lack external
lexical knowledge. POSTLE can be coupled with
any model for inducing cross-lingual embedding
spaces (Conneau et al., 2018; Artetxe et al., 2018;
Smith et al., 2017). If this model is unsupervised,
the procedure effectively yields a zero-shot LE spe-
cialization transfer, and holds promise to support
the construction of hierarchical semantic networks
for resource-lean languages in future work.

2 Post-Specialization for LE

Our post-specialization starts with the Lexical En-
tailment Attract-Repel (LEAR) model (Vulić and
Mrkšić, 2018), a state-of-the-art retrofitting model
for LE, summarized in §2.1. While we opt for LEAR

because of its strong performance and ease of use, it
is important to note that our POSTLE models (§2.2
and §2.3) are not in any way bound to LEAR and
can be applied on top of any LE retrofitting model.

2.1 Initial LE Specialization: LEAR

LEAR fine-tunes the vectors of words observed in a
set of external linguistic constraints C = S∪A∪L,
consisting of synonymy pairs S such as (clever,
intelligent), antonymy pairs A such as (war, peace),
and lexical entailment (i.e., hyponymy-hypernymy)
pairs L such as (dog, animal). For the L pairs, the
order of words is important: we assume that the left
word always refers to the hyponym.

Extending the ATTRACT-REPEL model for sym-
metric similarity specialization (Mrkšić et al.,
2017), LEAR defines two types of objectives: 1)
the ATTRACT (Att) objective aims to bring closer
together in the vector space words that are se-
mantically similar (i.e., synonyms and hyponym-
hypernym pairs); 2) the REPEL (Rep) objective
pushes further apart vectors of dissimilar words
(i.e., antonyms). Let B = {(x(k)

l ,x
(k)
r )}Kk=1 be the

set of K word pairs for which the Att or Rep score
is to be computed – these are the positive examples.
The set of corresponding negative examples T is
created by coupling each positive ATTRACT exam-
ple (xl,xr) with a negative example pair (tl, tr),
where tl is the vector closest (in terms of cosine
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similarity, within the batch) to xl and tr vector clos-
est to xr. The Att objective for a batch of ATTRACT

constraints BA is then given as:

Att(BA, TA) =

K∑

k=1

[
τ
(
δatt + cos

(
x
(k)
l , t

(k)
l

)
− cos

(
x
(k)
l ,x(k)

r

))

+ τ
(
δatt + cos

(
x(k)
r , t(k)r

)
− cos

(
x
(k)
l ,x(k)

r

)) ]
. (1)

τ(x) = max(0, x) is the hinge loss and δatt is the
similarity margin imposed between the negative
and positive vector pairs. In contrast, for each posi-
tive REPEL example, the negative example (tl, tr)
couples the vector tl that is most distant from xl

and tr, most distant from xr. The Rep objective for
a batch of REPEL word pairs BR is then:

Rep(BR, TR) =

K∑

k=1

[
τ
(
δrep + cos

(
x
(k)
l ,x(k)

r

)
− cos

(
x
(k)
l , t

(k)
l

))

+ τ
(
δrep + cos

(
x
(k)
l ,x(k)

r

)
− cos

(
x(k)
r , t(k)r

)) ]
. (2)

LEAR additionally defines a regularization term
in order to preserve the useful semantic informa-
tion from the original distributional space. With
V (B) as the set of distinct words in a constraint
batch B, the regularization term is: Reg(B) =
λreg

∑
x∈V (B) ‖y − x‖2, where y is the LEAR-

specialization of the distributional vector x, and
λreg is the regularization factor.

Crucially, LEAR forces specialized vectors to
reflect the asymmetry of the LE relation with an
asymmetric distance-based objective. The goal is
to preserve the cosine distances in the specialized
space while steering vectors of more general con-
cepts (those found higher in the concept hierarchy)
to take larger norms.1 Vulić and Mrkšić (2018) test
several asymmetric objectives, and we adopt the
one reported to be the most robust:

LE (BL) =
K∑

k=1

‖x(k)
l | − ‖x

(k)
r ‖

‖x(k)
l ‖+ ‖x

(k)
r ‖

. (3)

BL denotes a batch of LE constraints. The full LEAR

objective is then defined as:

J = Att(BS , TS) +Rep(BA, TA)
+Att(BL, TL) + LE (BL) +Reg(BS ,BA,BL)

(4)
1E.g., while dog and animal should be close in the LE-

specialized space in terms of cosine distance, the vector norm
of animal should be larger than that of dog.

In summary, LEAR pulls words from synonymy
and LE pairs closer together (Att(BS , TS) and
Att(BL, TL)), while simultaneously pushing vec-
tors of antonyms further apart (Rep(BA, TA)) and
enforcing asymmetric distances for hyponymy-
hypernymy pairs (LE (BL)).

2.2 Post-Specialization Model
The retrofitting model (LEAR) specializes vectors
only for a subset of the full vocabulary: the words
it has seen in the external lexical resource. Such
resources are still fairly incomplete, even for ma-
jor languages (e.g., WordNet for English), and fail
to cover a large portion of the distributional vo-
cabulary (referred to as unseen words). The trans-
formation of the seen subspace, however, provides
evidence on the desired effects of LE-specialization.
We seek a post-specialization procedure for LE

(termed POSTLE) that propagates this useful signal
to the subspace of unseen words and LE-specializes
the entire distributional space (see Figure 1).

Let Xs be the subset of the distributional space
containing vectors of words seen in lexical con-
straints and let Ys denote LE-specialized vectors
of those words produced by the initial LE specializa-
tion model. For seen words, we pair their original
distributional vectors xs ∈ Xs with corresponding
LEAR-specialized vectors ys: post-specialization
then directly uses pairs (xs, ys) as training in-
stances for learning a global specialization function,
which is then applied to LE-specialize the remain-
der of the distributional space, i.e., the specializa-
tion function learned from (Xs,Ys) is applied to
the subspace of unseen words’ vectors Xu.

Let G(xi; θG) : Rd → Rd (with d as the di-
mensionality of the vector space) be the special-
ization function we are trying to learn using pairs
of distributional and LEAR-specialized vectors as
training instances. We first instantiate the post-
specialization model G(xi; θG) as a deep fully-
connected feed-forward network (DFFN) with H
hidden layers and m units per layer. The mapping
of the j-th hidden layer is given as:

x(j) = activ
(
x(j−1)Wj + b(j)

)
. (5)

activ refers to a non-linear activation function,2

2As discussed by Vulić et al. (2018); Ponti et al. (2018),
non-linear transformations yield better results: linear transfor-
mations cannot fully capture the subtle fine-tuning done by
the retrofitting process, guided by millions of pairwise con-
straints. We also verify that linear transformations yield poorer
performance, but we do not report these results for brevity.
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x(j−1) is the output of the previous layer (x(0) is
the input distributional vector), and (W(j),b(j)),
j ∈ {1, . . . ,H} are the model’s parameters θG.

The aim is to obtain predictions G(xs; θG) that
are as close as possible to the corresponding
LEAR-specializations ys. For symmetric similarity-
based post-specialization prior work relied on co-
sine distance to measure discrepancy between
the predicted and expected specialization (Vulić
et al., 2018). Since we are specializing vectors for
the asymmetric LE relation, the predicted vector
G(xs; θG) has to match ys not only in direction (as
captured by cosine distance) but also in size (i.e.,
the vector norm). Therefore, the POSTLE objective
augments cosine distance dcos with the absolute
difference of G(xs; θG) and ys norms:3

LS = dcos (G(xs; θG),ys)

+ δn
∣∣‖G(xs; θG)‖ − ‖ys‖

∣∣. (6)

The hyperparameter δn determines the contribution
of the norm difference to the overall loss.

2.3 Adversarial LE Post-Specialization

We next extend the DFFN post-specialization model
with an adversarial architecture (ADV), following
Ponti et al. (2018) who demonstrated its useful-
ness for similarity-based specialization. The intu-
ition behind the adversarial extension is as follows:
the specialization function G(xs; θG) should not
only produce vectors that have high cosine simi-
larity and similar norms with corresponding LEAR-
specialized vectors ys, but should also ensure that
these vectors seem “natural”, that is, as if they were
indeed sampled from Ys. We can force the post-
specialized vectors G(xs; θG) to be legitimate sam-
ples from the Ys distribution by introducing an ad-
versary that learns to discriminate whether a given
vector has been generated by the specialization
function or directly sampled from Ys. Such adver-
saries prevent the generation of unrealistic outputs,
as demonstrated in computer vision (Pathak et al.,
2016; Ledig et al., 2017; Odena et al., 2017).

The DFFN function G(x; θG) from §2.2 can be
seen as the generator component. We couple the
generator with the discriminator D(x; θD), also
instantiated as a DFFN. The discriminator performs
binary classification: presented with a word vector,
it predicts whether it has been produced by G or

3Simply minimizing Euclidean distance also aligns vectors
in terms of both direction and size. However, we consistently
obtained better results by the objective function from Eq. (6).

sampled from the LEAR-specialized subspace Ys.
On the other hand, the generator tries to produce
vectors which the discriminator would misclassify
as sampled from Ys. The discriminator’s loss is
defined via negative log-likelihood over two sets of
inputs; generator produced vectors G(xs; θG) and
LEAR specializations ys:

LD =−
N∑

s=1

logP (spec = 0|G(xs; θG); θD)

−
M∑

s=1

logP (spec = 1|ys; θD) (7)

Besides minimizing the similarity-based loss LS ,
the generator has the additional task of confusing
the discriminator: it thus perceives the discrimina-
tor’s correct predictions as its additional loss LG:

LG =−
N∑

s=1

logP (spec = 1|G(xs; θG); θD)

−
M∑

s=1

logP (spec = 0|ys; θD) (8)

We learn G’s and D’s parameters with stochastic
gradient descent – to reduce the co-variance shift
and make training more robust, each batch contains
examples of the same class (either only predicted
vectors or only LEAR vectors). Moreover, for each
update step of LG we alternate between sD update
steps for LD and sS update steps for LS .

2.4 Cross-Lingual LE Specialization Transfer

The POSTLE models enable LE specialization of
vectors of words unseen in lexical constraints. Con-
ceptually, this also allows for a LE-specialization of
a distributional space of another language (possibly
without any external constraints), provided a shared
bilingual distributional word vector space. To this
end, we can resort to any of the methods for induc-
ing shared cross-lingual vector spaces (Ruder et al.,
2018). What is more, most recent methods success-
fully learn the shared space without any bilingual
signal (Conneau et al., 2018; Artetxe et al., 2018;
Chen and Cardie, 2018; Hoshen and Wolf, 2018).

Let Xt be the distributional space of some tar-
get language for which we have no external lexi-
cal constraints and let P (x; θP ) : Rdt 7→ Rds be
the (linear) function projecting vectors xt ∈ Xt

to the distributional space Xds of the source lan-
guage with available lexical constraints for which
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we trained the post-specialization model. We then
simply obtain the LE-specialized space Yt of the
target language by composing the projection P
with the post-specialization G (see Figure 1):

Yt = G(P (Xt; θP ); θG) (9)

In §4.3 we report on language transfer experiments
with three different linear projection models P in
order to verify the robustness of the cross-lingual
LE-specialization transfer.4

3 Experimental Setup

Distributional Vectors. To test the robustness of
the POSTLE approach, we experiment with two
pre-trained English word vector spaces: (1) vec-
tors trained by Levy and Goldberg (2014) on the
Polyglot Wikipedia (Al-Rfou et al., 2013) using
Skip-Gram with Negative Sampling (SGNS-BOW2)
(Mikolov et al., 2013) and (2) GLOVE embed-
dings trained on the Common Crawl (Penning-
ton et al., 2014). In the cross-lingual transfer ex-
periments (§4.3), we use English, Spanish, and
French FASTTEXT embeddings trained on respec-
tive Wikipedias (Bojanowski et al., 2017).

Linguistic Constraints. We use the same set of
constraints as LEAR in prior work (Vulić and
Mrkšić, 2018): synonymy and antonymy con-
straints from (Zhang et al., 2014; Ono et al., 2015)
are extracted from WordNet and Roget’s Thesaurus
(Kipfer, 2009). As in other work on LE specializa-
tion (Nguyen et al., 2017; Nickel and Kiela, 2017),
asymmetric LE constraints are extracted from Word-
Net, and we collect both direct and indirect LE

pairs (i.e., (parrot, bird), (bird, animal), and (par-
rot, animal) are in the LE set) In total, we work
with 1,023,082 pairs of synonyms, 380,873 pairs
of antonyms, and 1,545,630 LE pairs.

Training Configurations. For LEAR, we adopt the
hyperparameter setting reported in the original pa-
per: δatt = 0.6, δrep = 0, λreg = 10−9. For POS-
TLE, we fine-tune the hyperparameters via random
search on the validation set: 1) DFFN uses H = 4
hidden layers, each with 1, 536 units and Swish
as the activation function (Ramachandran et al.,
2018); 2) ADV relies on H = 4 hidden layers, each

4We experiment with unsupervised and weakly supervised
models for inducing cross-lingual embedding spaces. How-
ever, we stress that the POSTLE specialization transfer is
equally applicable on top of any method for inducing cross-
lingual word vectors, some of which may require more bilin-
gual supervision (Upadhyay et al., 2016; Ruder et al., 2018).

with m = 2, 048 units and Leaky ReLU (slope
0.2) (Maas et al., 2014) for the generator. The dis-
criminator uses H = 2 layers with 1, 024 units and
Leaky ReLU. For each update based on the gener-
ator loss (LG), we perform sS = 3 updates based
on the similarity loss (LS) and sD = 5 updates
based on the discriminator loss (LD). The value for
the norm difference contribution in LS is set to to
δn = 0.1 (see Eq. (6)) for both POSTLE variants.
We train POSTLE models using SGD with the batch
size 32, the initial learning rate 0.1, and a decay
rate of 0.98 applied every 1M examples.

Asymmetric LE Distance. The distance that mea-
sures the strength of the LE relation in the special-
ized space reflects both the cosine distance between
the vectors as well as the asymmetric difference
between their norms (Vulić and Mrkšić, 2018):

ILE(x,y) = dcos(x,y) +
‖x‖ − ‖y‖
‖x‖+ ‖y‖ (10)

LE-specialized vectors of general concepts obtain
larger norms than vectors of specific concepts. True
LE pairs should display both a small cosine distance
and a negative norm difference. Therefore, in differ-
ent LE tasks we can rank the candidate pairs in the
ascending order of their asymmetric LE distance
ILE . The LE distances are trivially transformed into
binary LE predictions, using a binarization thresh-
old t: if ILE(x,y) < t, we predict that LE holds
between words x and y with vectors x and y.

4 Evaluation and Results

We extensively evaluate the proposed POSTLE mod-
els on two fundamental LE tasks: 1) predicting
graded LE and 2) LE detection (and directionality),
in monolingual and cross-lingual transfer settings.

4.1 Predicting Graded LE

The asymmetric distance ILE can be directly used
to make fine-grained graded assertions about the hi-
erarchical relationships between concepts. Follow-
ing previous work (Nickel and Kiela, 2017; Vulić
and Mrkšić, 2018), we evaluate graded LE on the
standard HyperLex dataset (Vulić et al., 2017).5

HyperLex contains 2,616 word pairs (2,163 noun
pairs, the rest are verb pairs) rated by humans by

5Graded LE is a phenomenon deeply rooted in cognitive
science and linguistics: it captures the notions of concept
prototypicality (Rosch, 1973; Medin et al., 1984) and category
vagueness (Kamp and Partee, 1995; Hampton, 2007). We refer
the reader to the original paper for a more detailed discussion.
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Figure 2: Spearman’s ρ correlation scores for two input distributional spaces on the noun portion of HyperLex
(2,163 concept pairs) conditioned on the number of test words covered (i.e., seen) in the external lexical resource.
Similar patterns are observed on the full HyperLex dataset. Two other baseline models report the following scores
on the noun portion of HyperLex in the 100% setting: 0.512 (Nickel and Kiela, 2017); 0.540 (Nguyen et al., 2017).

estimating on a [0, 6] scale the degree to which the
first concept is a type of the second concept.

Results and Discussion. We evaluate the perfor-
mance of LE specialization models in a deliberately
controlled setup: we (randomly) select a percentage
of HyperLex words (0%, 30%, 50%, 70%, 90% and
100%) which are allowed to be seen in the external
constraints, and discard the constraints containing
other HyperLex words, making them effectively
unseen by the initial LEAR model. In the 0% set-
ting all constraints containing any of the HyperLex
words have been removed, whereas in the 100% set-
ting, all available constraints are used. The scores
are summarized in Figure 2.

The 0% setting is especially indicative of POS-
TLE performance: we notice large gains in perfor-
mance without seeing a single word from HyperLex
in the external resource. This result verifies that the
POSTLE models can generalize well to words un-
seen in the resources. Intuitively, the gap between
POSTLE and LEAR is reduced in the settings where
LEAR “sees” more words. In the 100% setting we
report the same scores for LEAR and POSTLE: this
is an artefact of the HyperLex dataset construction
as all HyperLex word pairs were sampled from
WordNet (i.e., the coverage of test words is 100%).
Another finding is that in the resource-leaner 0%
and 30% settings POSTLE outperforms two other
baselines (Nguyen et al., 2017; Nickel and Kiela,
2017), despite the fact that the two baselines have
“seen” all HyperLex words. The results further in-
dicate that POSTLE yields gains on top of different
initial distributional spaces. As expected, the scores
are higher with the more sophisticated ADV variant.

4.2 LE Detection

Detection and Directionality Tasks. We now
evaluate POSTLE models on three binary classi-
fication datasets commonly used for evaluating LE

models (Roller et al., 2014; Shwartz et al., 2017;
Nguyen et al., 2017), compiled into an integrated
benchmark by Kiela et al. (2015).6

The first task, LE directionality, is evaluated
on 1,337 true LE pairs (DBLESS) extracted from
BLESS (Baroni and Lenci, 2011). The task tests the
models’ ability to predict which word in the LE pair
is the hypernym. This is simply achieved by taking
the word with a larger word vector norm as the
hypernym. The second task, LE detection, is evalu-
ated on the WBLESS dataset (Weeds et al., 2014),
comprising 1,668 word pairs standing in one of
several lexical relations (LE, meronymy-holonymy,
co-hyponymy, reverse LE, and no relation). The
models have to distinguish true LE pairs from pairs
that stand in other relations (including the reverse
LE). We score all pairs using the ILE distance. Fol-
lowing Nguyen et al. (2017), we find the threshold
t via cross-validation.7 Finally, we evaluate LE de-
tection and directionality simultaneously on BIB-
LESS, a relabeled variant of WBLESS. The task
is to detect true LE pairs (including the reverse LE

pairs), and also to determine the relation direction-
ality. We again use ILE to detect LE pairs, and then
compare the vector norms to select the hypernym.

For all three tasks, we consider two evaluation

6http://www.cl.cam.ac.uk/∼dk427/generality.html
7In each of the 1,000 iterations, 2% of the pairs are sampled

for threshold tuning, and the remaining 98% are used for
testing. The reported numbers are therefore averaged scores.
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Setup: FULL Setup: DISJOINT

DBLESS WBLESS BIBLESS DBLESS WBLESS BIBLESS

SG GL SG GL SG GL SG GL SG GL SG GL

LEAR (Vulić et al., 2018) .957 .955 .905 .910 .872 .875 .528 .531 .555 .529 .381 .389

POSTLE DFFN .957 .955 .905 .910 .872 .875 .898 .825 .754 .746 .696 .677
POSTLE ADV .957 .955 .905 .910 .872 .875 .942 .888 .832 .766 .757 .690

Table 1: Accuracy of POSTLE models on *BLESS datasets, for two different sets of English distributional vectors:
Skip-Gram (SG) and GloVe (GL). LEAR reports highest scores on *BLESS datasets in the literature.

Target: SPANISH Target: FRENCH

Random .498 .515
Distributional .362 .387

Ar Co Sm Ar Co Sm
POSTLE DFFN .798 .740 .728 .688 .735 .742
POSTLE ADV .768 .790 .782 .746 .770 .786

Table 2: Average precision (AP) of POSTLE models
in cross-lingual transfer. Results are shown for both
POSTLE models (DFFN and ADV), two target languages
(Spanish and French) and three methods for inducing
bilingual vector spaces: Ar (Artetxe et al., 2018), Co
(Conneau et al., 2018), and Sm (Smith et al., 2017).

settings: 1) in the FULL setting we use all available
lexical constraints (see §3) for the initial LEAR spe-
cialization; 2) in the DISJOINT setting, we remove
all constraints that contain any of the test words,
making all test words effectively unseen by LEAR.

Results and Discussion. The accuracy scores on
*BLESS test sets are provided in Table 1.8 Our
POSTLE models display exactly the same perfor-
mance as LEAR in the FULL setting: this is simply
because all words found in *BLESS datasets are
covered by the lexical constraints, and POSTLE

does not generalize the initial LEAR transforma-
tion to unseen test words. In the DISJOINT setting,
however, LEAR is left “blind” as it has not seen a
single test word in the constraints: it leaves distri-
butional vectors of *BLESS test words identical. In
this setting, LEAR performance is equivalent to the
original distributional space. In contrast, learning
to generalize the LE specialization function from
LEAR-specializations of other words, POSTLE mod-
els are able to successfully LE-specialize vectors
of test *BLESS words. As in the graded LE, the
adversarial POSTLE architecture outperforms the
simpler DFFN model.

8We have evaluated the prediction performance also in
terms of F1 and, in the ranking formulation, in terms of aver-
age precision (AP) and observed the same trends in results.

4.3 Cross-Lingual Transfer

Finally, we evaluate cross-lingual transfer of LE

specialization. We train POSTLE models using dis-
tributional (FASTTEXT) English (EN) vectors as
input. Afterwards, we apply those models to the
distributional vector spaces of two other languages,
French (FR) and Spanish (ES), after mapping them
into the same space as English as described in §2.4.

We experiment with several methods to induce
cross-lingual word embeddings: 1) MUSE, an ad-
versarial unsupervised model fine-tuned with the
closed-form Procustes solution (Conneau et al.,
2018); 2) an unsupervised self-learning algorithm
that iteratively bootstraps new bilingual seeds, ini-
tialized according to structural similarities of the
monolingual spaces (Artetxe et al., 2018); 3) an or-
thogonal linear mapping with inverse softmax, su-
pervised by 5K bilingual seeds (Smith et al., 2017).

We test POSTLE-specialized Spanish and French
word vectors on WN-Hy-ES and WN-Hy-FR, two
equally sized datasets (148K word pairs) created by
Glavaš and Ponzetto (2017) using the ES WordNet
(Gonzalez-Agirre et al., 2012) and the FR WordNet
(Sagot and Fišer, 2008). We perform a ranking
evaluation: the aim is to rank LE pairs above pairs
standing in other relations (meronyms, synonyms,
antonyms, and reverse LE). We rank word pairs in
the ascending order based on ILE , see Eq. (10).

Results and Discussion. The average precision
(AP) ranking scores achieved via cross-lingual
transfer of POSTLE are shown in Table 2. We report
AP scores using three methods for cross-lingual
word embedding induction, and compare their per-
formance to two baselines: 1) random word pair
scoring, and 2) the original (FASTTEXT) vectors.

The results uncover the inability of distributional
vectors to capture LE – they yield lower perfor-
mance than the random baseline, which strongly
emphasizes the need for the LE-specialization. The
transferred POSTLE yields an immense improve-
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ment over the distributional baselines (up to +0.428,
i.e. +118%). Again, the adversarial architecture sur-
passes DFFN across the board, with the single excep-
tion of EN-ES transfer coupled with Artetxe et al.
(2018)’s cross-lingual model. Furthermore, trans-
fers with unsupervised (Ar, Co) and supervised
bilingual mapping (Sm) yield comparable perfor-
mance. This implies that a robust LE-specialization
of distributional vectors for languages with no
lexico-semantic resources is possible even without
any bilingual signal or translation effort.

5 Related Work

Vector Space Specialization. In general, lexical
specialization models fall into two categories: 1)
joint optimization models and 2) post-processing or
retrofitting models. Joint models integrate external
constraints directly into the distributional objective
of embedding algorithms such as Skip-Gram and
CBOW (Mikolov et al., 2013), or Canonical Corre-
lation Analysis (Dhillon et al., 2015). They either
modify the prior or regularization of the objective
(Yu and Dredze, 2014; Xu et al., 2014; Kiela et al.,
2015) or augment it with factors reflecting exter-
nal lexical knowledge (Liu et al., 2015; Ono et al.,
2015; Osborne et al., 2016; Nguyen et al., 2017).
Each joint model is tightly coupled to a specific dis-
tributional objective: any change to the underlying
distributional model requires a modification of the
whole joint model and expensive retraining.

In contrast, retrofitting models (Faruqui et al.,
2015; Rothe and Schütze, 2015; Wieting et al.,
2015; Jauhar et al., 2015; Nguyen et al., 2016;
Mrkšić et al., 2016; Mrkšić et al., 2017; Vulić
and Mrkšić, 2018) use external constraints to post-
hoc fine-tune distributional spaces. Effectively, this
makes them applicable to any input distributional
space, but they modify only vectors of words seen
in the external resource. Nonetheless, retrofitting
models tend to outperform joint models in the con-
text of both similarity-based (Mrkšić et al., 2016)
and LE specialization (Vulić and Mrkšić, 2018).

The recent post-specialization paradigm has
been so far applied only to the symmetric semantic
similarity relation. Vulić et al. (2018) generalize
over the retrofitting ATTRACT-REPEL (AR) model
(Mrkšić et al., 2017) by learning a global similarity-
focused specialization function implemented as a
DFFN. Ponti et al. (2018) further propose an adver-
sarial post-specialization architecture. In this work,
we show that post-specialization represents a vi-

able methodology for specializing all distributional
word vectors for the LE relation as well.

Modeling Lexical Entailment. Extensive re-
search effort in lexical semantics has been dedi-
cated to automatic detection of the fundamental tax-
onomic LE relation. Early approaches (Weeds et al.,
2004; Clarke, 2009; Kotlerman et al., 2010; Lenci
and Benotto, 2012, inter alia) detected LE word
pairs by means of asymmetric direction-aware
mechanisms such as distributional inclusion hy-
pothesis (Geffet and Dagan, 2005), and concept
informativeness and generality (Herbelot and Gane-
salingam, 2013; Santus et al., 2014; Shwartz et al.,
2017), but were surpassed by more recent methods
that leverage word embeddings.

Embedding-based methods either 1) induce LE-
oriented vector spaces using text (Vilnis and Mc-
Callum, 2015; Yu et al., 2015; Vendrov et al., 2016;
Henderson and Popa, 2016; Nguyen et al., 2017;
Chang et al., 2018; Vulić and Mrkšić, 2018) and/or
external hierarchies (Nickel and Kiela, 2017, 2018;
Sala et al., 2018) or 2) use distributional vectors as
features for supervised LE detection models (Ba-
roni et al., 2012; Tuan et al., 2016; Shwartz et al.,
2016; Glavaš and Ponzetto, 2017; Rei et al., 2018).
Our POSTLE method belongs to the first group.

Vulić and Mrkšić (2018) proposed LEAR, a
retrofitting LE model which displays performance
gains on a spectrum of graded and ungraded LE

evaluations compared to joint specialization mod-
els (Nguyen et al., 2017). However, LEAR still spe-
cializes only the vectors of words seen in external
resources. The same limitation holds for a family
of recent models that embed concept hierarchies
(i.e., trees or directed acyclic graphs) in hyperbolic
spaces (Nickel and Kiela, 2017; Chamberlain et al.,
2017; Nickel and Kiela, 2018; Sala et al., 2018;
Ganea et al., 2018). Although hyperbolic spaces are
arguably more suitable for embedding hierarchies
than the Euclidean space, the “Euclidean-based”
LEAR has been proven to outperform the hyper-
bolic embedding of the WordNet hierarchy across
a range of LE tasks (Vulić and Mrkšić, 2018).

The proposed POSTLE framework 1) mitigates
the limited coverage issue of retrofitting LE-
specialization models, and 2) removes the problem
of dependence on distributional objective in joint
models. Unlike retrofitting models, POSTLE LE-
specializes vectors of all vocabulary words, and un-
like joint models, it is computationally inexpensive
and applicable to any distributional vector space.
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6 Conclusion

We have presented POSTLE, a novel neural post-
specialization framework that specializes distribu-
tional vectors of all words – including the ones
unseen in external lexical resources – to accentu-
ate the hierarchical asymmetric lexical entailment
(LE or hyponymy-hypernymy) relation. The ben-
efits of our two all-words POSTLE model variants
have been shown across a range of graded and bi-
nary LE detection tasks on standard benchmarks.
What is more, we have indicated the usefulness of
the POSTLE paradigm for zero-shot cross-lingual
LE specialization of word vectors in target lan-
guages, even without having any external lexical
knowledge in the target. In future work, we will
experiment with more sophisticated neural archi-
tectures, other resource-lean languages, and boot-
strapping approaches to LE specialization. Code
and POSTLE-specialized vectors are available at:
[https://github.com/ashkamath/POSTLE].
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Korhonen. 2018. Post-specialisation: Retrofitting
vectors of words unseen in lexical resources. In Pro-
ceedings of NAACL-HLT, pages 516–527.
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Abstract
Vector representations of words have seen an
increasing success over the past years in a va-
riety of NLP tasks. While there seems to be a
consensus about the usefulness of word em-
beddings and how to learn them, it is still
unclear which representations can capture the
meaning of phrases or even whole sentences.
Recent work has shown that simple operations
outperform more complex deep architectures.
In this work, we propose two novel constraints
for computing noun phrase vector representa-
tions. First, we propose that the semantic and
not the syntactic contribution of each compo-
nent of a noun phrase should be considered,
so that the resulting composed vectors express
more of the phrase meaning. Second, the
composition process of the two phrase vectors
should apply suitable dimensions’ selection in
a way that specific semantic features captured
by the phrase’s meaning become more salient.
Our proposed methods are compared to 11
other approaches, including popular baselines
and a neural net architecture, and are evaluated
across 6 tasks and 2 datasets. Our results show
that these constraints lead to more expressive
phrase representations and can be applied to
other state-of-the-art methods to improve their
performance.

1 Introduction

Vector representations of words date back to the
1990’s (Landauer and Dumais, 1997) and have
seen an increasing success over the past years
(Mikolov et al., 2013; Pennington et al., 2014;
Devlin et al., 2018). While there seems to be
a consensus about the usefulness of word em-
beddings and how to learn them, it is still con-
troversial how to learn representations that cap-
ture the meaning of phrases or even whole sen-
tences (Zhu et al., 2018). Generally, two main ap-
proaches are used to compute phrase representa-
tions: non-compositional and compositional. The

former treats phrases as single units and attempts
to learn their representations directly from cor-
pora, much as it is done for words (Socher et al.,
2010; Mikolov et al., 2013; Yin and Schütze,
2014). These approaches ignore the components
of the phrase and are not scalable to all possible
phrases of a language. On the other hand, the com-
positional approach derives a phrase or sentence
representation from the embeddings of its compo-
nent words in various ways, from simple addition
and average operations, e.g., Mitchell and Lap-
ata (2010); Turney (2012), to more complex neu-
ral net architectures, e.g., Pagliardini et al. (2018);
Conneau et al. (2017). However, such approaches
often ignore word order and other linguistic intu-
itions and lead to representations that cannot truly
express the meaning of the sentence, as recently
discussed by Zhu et al. (2018).

We concentrate on efficient phrase representa-
tions which capture meaning and can be handled
as sentence components. We believe that from
such representations the meaning of a full sen-
tence can be compositionally computed, much as
in more traditional semantic theories, e.g. in the
Fregean functional application. For example, if we
can compute efficient representations for all possi-
ble phrases contained in constituency parsing, say
NP, VP, PP, etc., we can then derive the mean-
ing of the whole sentence by functionally applying
the constituents’ representations on each other. To
this end, we believe that for compositional phrases
there should be compositional phrase representa-
tions, while for non-compositional ones, e.g., id-
ioms, learning direct representations from corpora
might be more effective. In this paper, we focus on
bigram compositional nominal phrase vectors of
adjective-noun and noun-noun (compounds) com-
binations. By starting from this linguistic cate-
gory, we can reliably evaluate the two constraints
we propose on one of the most common con-
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stituent types, namely the NP phrase. Specifically,
in this work we propose two novel constraints for
computing such phrase vectors that are linguisti-
cally informed and intuitively explainable. First,
we propose to focus on the semantic – and not the
syntactic – contribution of each phrase component
and decide whether the syntactic head or the syn-
tactic modifier (Marneffe et al., 2006; McDonald
et al., 2013) is semantically more significant for
the meaning of the phrase. The phrase component
with the most clear contribution to the meaning of
the phrase might actually be the syntactic modifier
and not the syntactic head and then this word is to
be treated as the semantic head for the composi-
tion. Second, we propose that for two given word
embeddings that need to be composed, we should
select for the composition only those dimensions
of the semantic modifier embedding that are more
relevant to the semantic head of the phrase. In
order words, we need to pick from the semantic
modifier these attributes that are more relevant to
the semantic head phrase. For example, for the
compositional phrase black magic, intuitively we
want to select all dimensions of black that have to
do something with magic and not others that have
to do with, e.g. t-shirt. In this way, we can com-
pose the representation black magic by combining
the attributes of magic with the “magic-like” at-
tributes of black.

The contributions of this paper are three-fold:
Firstly, we propose two novel constraints for com-
posing linguistically informed and intuitively ex-
plainable noun phrase representations and show
how these approaches could benefit future compo-
sition methods. Secondly, we provide a thorough
evaluation of our methods over 6 evaluation tasks,
2 datasets and 11 other methods. Thirdly, we
create an evaluation dataset of nomimal phrase-
unigram paraphrase pairs, which we make openly
available.

2 Relevant work

Early work on representing word sequences fo-
cused on bigram compositionality and considered
various simple functions, such as vector addi-
tion and averaging (Mitchell and Lapata, 2010;
Blacoe and Lapata, 2012), while already Turney
(2012) integrated features for more meaningful re-
lations. This early work focused on the representa-
tion of specific syntactic constructions and specific
number of words and continues to be an ongo-

ing research topic: representations of verb phrases
(Hashimoto and Tsuruoka, 2016), noun phrases
(Baroni and Zamparelli, 2010; Boleda et al., 2013;
Dima, 2016), a combination of the two (Zan-
zotto et al., 2010; Wieting et al., 2015), noun-
noun compositionality (Reddy et al., 2011; Her-
mann et al., 2012; Cordeiro et al., 2018), noun
phrases attribute meaning (Hartung et al., 2017;
Shwartz and Waterson, 2018), etc. This strand
of research covers a variety of approaches rang-
ing from the simple vector arithmetics mentioned
to vector-matrix composition operations (Zanzotto
et al., 2010; Guevara, 2010; Baroni and Zampar-
elli, 2010; Boleda et al., 2013), to the functional
application of word vectors (Coecke et al., 2010;
Grefenstette et al., 2014) to RNNs (Wieting et al.,
2015) and other supervised (Hartung et al., 2017;
Shwartz and Waterson, 2018) or unsupervised ap-
proaches (Hermann et al., 2012). Particularly, re-
cent research producing context-aware representa-
tions of words (Peters et al., 2018; Devlin et al.,
2018) has already had a great impact on the per-
formance of many of these composition functions.
At the same time, another strand of research con-
centrates on representing arbitrarily long phrases
and sentences and mainly employs neural nets ar-
chitectures: bag-of-words models (Kalchbrenner
et al., 2014), feature-weighted average (Yu and
Dredze, 2015) models, deep averaging networks
(Iyyer et al., 2015), recursive (Socher et al., 2013;
Conneau et al., 2017) and convolutional NNs (Yin
and Schütze, 2015), encoding-decoding architec-
tures (Kiros et al., 2015), to name only a few. De-
spite the large number of such approaches, it is
still not clear that the composed phrase or sen-
tence embeddings express the intended meaning,
as recently shown by Shwartz and Dagan (2019),
Zhu et al. (2018) and Dasgupta et al. (2018). Even
more interesting is the fact that averaging and
weighted averaging approaches have been shown
to outperform complex deep learning methods
(White et al., 2015; Wieting et al., 2016; Arora
et al., 2017). This shows potential in exploiting the
merits of simpler approaches but boosting them up
with more powerful intuitive and linguistic con-
straints, as the ones proposed in this work.

3 Proposed Constraints

3.1 Constraint One: Semantic Contribution

The (dependency) syntax informs us that in an En-
glish bigram compositional, nominal phrase, the
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first word is the modifier and the second the head.
However, we observe that this syntactic decision
does not always coincide with the role that each
word plays in the meaning of the phrase. It can be
the case that the modifier is more “meaningful” for
the phrase. For example, if someone says space
ship, we would be inclined to first think of space
than of a prototypical ship. In that sense, space has
a more significant contribution to the meaning of
the phrase than ship has. By contrast, in the phrase
black magic the notion of magic is more prototyp-
ical for the meaning of the phrase.

Current work that aims at compositionally con-
structing phrase representations takes the asym-
metric contribution of the phrase components into
account, e.g. by assigning different weights to
the modifier and the head. However, all of this
work bases the contribution decision on the syn-
tax, i.e. on the syntactic head and modifier. How-
ever, as it has already been observed for English
noun-noun compositionality (Bannard et al., 2003;
Reddy et al., 2011; Cordeiro et al., 2018), the first
component of a noun-noun phrase, i.e. the (syn-
tactic) modifier, might have a greater contribution
to the meaning of the phrase. Similar is the lit-
erature for other linguistic phenomena, e.g., light
verbs (e.g., take a shower, give a kiss) or auxil-
iaries where the syntactic head does not coincide
with the semantic, (see, e.g., Butt, 2010), but also
in traditional semantic composition (e.g., lambda
calculus) the quantifier of a sentence serves as the
head, although the verb is considered the syntac-
tic head of the sentence. Although this asymme-
try has been observed for nominal phrases as well,
e.g. by Hartung et al. (2017) who find that ad-
jective representations capture more of the com-
positional semantics of an adjective-noun phrase
than nouns do and implicitly also by Mitchell and
Lapata (2010), whose composition functions give
more weight to the adjectives than to the nouns,
to our knowledge this is the first work that ac-
tively proposes and integrates this constraint into
the composition process.

To compose meaningful phrase representations,
we propose to consider the semantic contribution
of the syntactic head and modifier of a phrase. In
other words, we need to consider which is the se-
mantic head and which is the semantic modifier.
To this end, we can use word embeddings to de-
cide whether a phrase is heady, i.e. the syntactic
head has a stronger semantic contribution than the

syntactic modifier, mody, i.e. the syntactic modi-
fier has a stronger semantic contribution than the
syntactic head, or equal, i.e. the syntactic head
and modifier have both the same contribution to
the meaning of the phrase. For bigram phrases that
can be paraphrased by a single synonym –called
target from now on – (e.g. black magic = sorcery),
we find that the embeddings of some targets are
more similar to the syntactic modifier embedding
and of some others more similar to the syntactic
head embedding of the phrase. We implement this
observation: we compute the cosine similarity of
the syntactic head to the target and of the syntactic
modifier to the target and calculate their ∆. If the
∆ is more than one standard deviation under the
mean of all ∆s (z-score computation), then the la-
bel equal is given, to account for cases where both
words have an equal contribution to the meaning.
Otherwise, the phrase is labeled based on whether
the similarity of the syntactic head to the target or
the syntactic modifier to the target is greater.

Since this approach for deciding on the seman-
tic contribution of the syntactic head and modifier
relies on the similarity of each of those compo-
nents to a target, it is not available for all possi-
ble phrases because there is not one suitable uni-
gram paraphrase/synonym for each phrase. There-
fore, we want to test if the semantic contribu-
tion constraint is indeed a quantifiable, inherent
property of the phrases that can be learned and
can thus still be applied to phrases without tar-
gets. We did initial experimenting to train a clas-
sifier with a balanced set of 1000 headys and 1000
modys.1 The collection of this set will be de-
scribed in Section 4.2. For the classifier, we used
80% of the instances for training and 20% for test-
ing. The classifier had to learn the mody-heady la-
bel solely based on the embeddings of the phrase
components and without seeing any target embed-
ding. The best trained model so far has been a
MultiLayer Perceptron (MLP) with 3 hidden lay-
ers, 70 neurons per layer, 200 iterations and ran-
dom weight initialization, delivering an accuracy
of 74.8%. This shows that the semantic contribu-
tion constraint is indeed an inherent property of
the embeddings that can be learnt from phrases
having synonym-targets and be used for labeling
phrases without such targets. Further experiment-
ing and more training data can potentially improve

1We left out the equal label for this experiment due to the
low number of such training samples.
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this performance further.

3.2 Constraint Two: Dimensions’ selection

The first constraint allows us to formulate a fur-
ther one that directly shapes the composition pro-
cess of phrase representations. Precisely, we pro-
pose that a composed representation of a bigram
phrase should contain attributes of the semantic
head embedding and only those attributes of the
semantic modifier that are more relevant to the se-
mantic head. This means that we need to select
only those dimensions of the embedding of the se-
mantic modifier that are related to the semantic
head. Let’s look at an example: black magic is
a heady phrase, i.e. the contribution of the syn-
tactic head magic is more significant for the over-
all meaning of the phrase than the contribution of
black. This becomes even clearer if we think of
a target synonym such as sorcery: for the mean-
ing of the word sorcery, magic has a stronger cor-
relation than black has. Thus, in this example,
the composed vector should include the dimen-
sions of magic and only those dimensions of black
that are relevant to magic. “More relevant” dimen-
sions are formalized as dimensions that are closer
together. Even in embeddings, where the vec-
tors do not mirror the frequency co-occurrences of
the given word to other words of the vocabulary
in a one-to-one fashion and no matter the dimen-
sionality reduction approach, the same dimension
should be capturing similar properties across dif-
ferent words, since each dimension corresponds to
the same neuron having produced it. Thus, the
same dimensions of the two phrase components
embeddings that are closer together should corre-
spond to similar notions and closer points in the
vector space.

Intuitively, this dimensions’ selection imple-
ments the idea that the composition of two words
results in specific semantic aspects becoming
more salient. This intuition is close to the dila-
tion model of Mitchell and Lapata (2010), which
attempts to stretch a vector v to the direction of a
vector u in order to compute their composed vec-
tor. It is also similar to the more traditional idea
of functional application: one tensor or vector is
applied to another, resulting into their composi-
tional representation (Coecke et al., 2010; Grefen-
stette et al., 2014). This has also been proposed by
Baroni and Zamparelli (2010) for adjective-noun
composition: the nouns are vectors and corpus-

learned adjective matrices apply to these vectors
producing other vectors. However, this only works
for adjective-noun phrases where the adjectives
can be clearly defined as the functions. For han-
dling noun-noun phrases (and potentially other
phrases), both phrase constituents have to be seen
as terms (similar to λ calculus-like terms) and thus
as vectors that can be applied in any direction.
This allows us to formulate the following func-
tions, which perform a kind of functional applica-
tion, by taking the semantic modifiers as the func-
tions and the semantic heads as the terms applied
on them.

Compositional Function 1 SD
1: function COMPOSESELECTEDDIMSVEC
2: selected dims← []
3: for i = 0 to headEmbed.length do
4: headDim← headEmbed[i]
5: modDim← modEmbed[i]
6: if headDim−modDim < τ then
7: selected dims.append(modDim)
8: else
9: selected dims.append(headDim)

return selected dims

Compositional Function 2 MOD-SD
1: function COMPOSEMODANDSELECTEDDIMSVEC
2: mod selected dims← α ·modEmbed+ β · SD

In the first compositional function 1 (SD) we
compare each dimension of the embedding of the
semantic head of the phrase with the correspond-
ing dimension of the semantic modifier of the
phrase. If their ∆ is under a threshold τ , then
the dimensions are taken to be close enough and
thus relevant and the dimension of the semantic
modifier embedding is inserted unchanged into the
new vector selected dims. If the ∆ is greater than
τ , then the dimensions are taken to be distant and
thus irrelevant to each other other and the dimen-
sion of the head is inserted into selected dims. The
final vector is a mixed vector consisting of a com-
bination of the original modifier and head dimen-
sions. Based on a grid search in steps of 10%
from 0 to 1, we find τ = 0.3 as the best param-
eter for the required threshold. Note that this is
different than the elementwise max operation, as
we do not select the dimension with the highest
value among the two but instead we always select
the semantic modifier dimension as long as its dif-
ference to the semantic head dimension is smaller
than τ , no matter if the semantic modifier’s dimen-
sion is greater or smaller than the head’s. In our
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second proposed composition function (MOD-SD)
we make use of the vector produced by function 1:
we weight the entire vector SD by β and add it
to the original embedding of the semantic modi-
fier which is also weighted by α. This function is
inspired by the well-performing weighted addition
operation but instead of the original semantic head
vector, it uses the constructed functional vector of
1, which captures only the semantic head-relevant
attributes of the semantic modifier and the seman-
tic head attributes. Suitable grid search in steps of
0.02 shows α = 0.32 and β = 0.68 as the best pa-
rameters. All tuning was performed on a held-out
set, consisting of the 50% of the created dataset,
described in Section 4.2.

As it is clear, these two composition functions
heavily depend on the head and modifier roles of
the phrase and are therefore inseparably connected
with the constraint of the semantic contribution
proposed in Section 3.1.

4 Evaluation of the constraints

4.1 Compared Approaches

For evaluation we include baseline approaches of
vector arithmetics, the popular matrix-vector com-
position approach and an own trained neural net-
work. If the injection of our first constraint into
those approaches boosts their performance, the
semantic contribution constraint can be consid-
ered for future composition approaches, especially
those aiming at simple but linguistically informed
operations. On the other hand, if the composition
process described in our second constraint outper-
forms the compared approaches, we can be con-
fident that the dimensions’ selection as proposed
in the previous section is a useful intuition captur-
ing compositionality and can be safely integrated
in future composition tasks.

Baseline approaches We include baseline oper-
ations from the literature that were recently shown
to outperform complex deep architectures (White
et al., 2015; Wieting et al., 2016; Arora et al.,
2017). We use weighted elementwise vector ad-
dition (1) and multiplication (2) (Mitchell and La-
pata, 2010; Turney, 2012; White et al., 2015; Har-
tung et al., 2017; Arora et al., 2017) and weighted
elementwise average (3) (Mikolov et al., 2013;
Wieting et al., 2016). Since addition and multi-
plication have been shown to perform so strongly
and since multiplicative models have the drawback

that the presence of zeroes in either of the vec-
tors leads to information essentially being lost, we
follow Mitchell and Lapata (2010) and also in-
clude a fourth equation, combining the addition
and multiplication operations (4). For the weight-
ing we do our own fine-tuning which is specific to
the dataset we use.2 This fine-tuning also showed
that for our set the distinction between weights for
adjective-noun and noun-noun phrases is not bene-
ficial, contrary to Mitchell and Lapata (2010), who
set the weights based on the part-of-speech. After
tuning, the parameters are set to α = β = 1.0,
which in practice means that the unweighted vari-
ants perform better than their weighted counter-
parts. We also include “easy” baselines involving
only the syntactic head or the syntactic modifier of
the phrase and check whether the proposed com-
positional functions are better than those variants
with no composition at all.
(1) wei addj : rj = αmj + βhj

(2) wei multj : rj = αmj · βhj
(3) wei averj : rj =

αmj+βhj

2

(4) wei combj : rj = αmj + βhj + αmj · βhj
Matrix-vector approaches As already dis-
cussed before, popular approaches for comput-
ing phrases representations are the various matrix-
vector composition operations. Already explored
by Guevara (2010), Baroni and Zamparelli (2010)
and Zanzotto et al. (2010) these approaches have
since been used by various researchers, e.g.
Boleda et al. (2013); Dima (2016). In these ap-
proaches the two constituent vectors of a phrase
u and v ∈ Rn are composed by multiplying them
via two matrices A,B ∈ Rn× n. For Zanzotto
et al. (2010) and Guevara (2010), A and B are
the same for every u and v and are calculated
with partial least squares regression, while for the
adjective-noun composition of Baroni and Zam-
parelli (2010), A is set to 0 and the weight ma-
trix B is specifically learned for each single ad-
jective. The mathematical formulation of this ap-
proach is: r = Au + Bv. Given the effectiveness
of this approach (see e.g. Boleda et al. (2013)),
we compare our proposed functions to it. From
the three works mentioned above implementing
this approach, only Zanzotto et al.’s is suitable
for our purposes because a) it can handle both
adjective-noun and noun-noun combinations and
b) its dataset is openly available.

2In fact, we did test with the original parameters and
found out that they deliver worse performance.
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Deep Learning approach Although White et al.
(2015), Wieting et al. (2016) and Arora et al.
(2017) found that simple operations outperform
complex deep architectures, there is still value in
comparing the performance of a trained neural net
to the performance of the other methods. For
this purpose we experimented with multiple archi-
tectures, including feedforward nets, RNNs and
LSTMs, attempting to find the best that fits our
data. The training (80% of the set) and testing data
(20% of the set) we used will be analyzed in more
detail in the next section. Briefly, the datasets con-
sisted of pairs of embeddings of the phrase compo-
nents and their unigram synonym/paraphrase. For
example, the embeddings of dog and house were
paired with the embedding of the synonymous
kennel. The neural net had to learn the synonym
embedding by considering the two word embed-
dings as input. The best performing model was a
feedforward neural net with 2 hidden dense layers.
We used Xavier weight initialization (Glorot and
Bengio, 2010) and the ELU (Clevert et al., 2015)
activation function for all layers. Our updater was
ADADELTA (Zeiler, 2012) and our learning rate
0.1. The training run for 200 epochs with 0.5
global dropout.

The left-most column of Table 1 gives a better
overview of all compared methods.

4.2 Data

Data collection To tune and evaluate our pro-
posals we needed a set that contains bigram noun
phrases matched to unigram paraphrase/synonym
targets, so that we have a “stable, uncontroversial
” representation to compare our composed repre-
sentations to (see also Zanzotto et al. (2010) and
Turney (2012)). In this way, we can compose
the representation of each phrase of the set with
each of the methods under comparison and ide-
ally, the composed representations are very simi-
lar to the embedding of the target of the pair since
phrase and target have a synonymy/paraphrase re-
lation. This is a harder task than comparing the
composed representation to a corpus-learned rep-
resentation of the phrase because the target rep-
resentation is “independent”, i.e. it does not cap-
ture cooccurrence effects of the components of the
phrase, as the corpus-learned representation does.
To this end, we created a new dataset which we

make openly available.3 The creation process of
the set is similar to that of Turney (2012): we
extract the nouns of WordNet (Fellbaum, 1998)
that have a bigram phrase synonym in their synset
and pair them together, e.g., from the entry ken-
nel, doghouse, dog house (outbuilding that serves
as a shelter for a dog) we extract the pair dog
house - kennel . The pairs were cleaned to ex-
clude all proper names and were further expanded
by Turney’s (2012) set which has the same for-
mat.4 This process resulted in 6109 pairs of this
format. However, not all pairs are compositional;
since we are interested in creating compositional
phrase representations, we wanted to ensure that
we are only evaluating on suitable pairs, as a hot
dog can never be a composition of hot and dog.
To this end, we attempted to automatically ex-
clude non-compositional pairs by following Tur-
ney (2012), who proposes two WordNet-based ap-
proaches: the phrase is most likely compositional
if a) one of the words of the phrase is also present
in the gloss of this phrase (cf. the dog house en-
try) or b) the (syntactic) head noun of the phrase is
also a hypernym of the phrase (e.g., brain surgery
has surgery as its hypernym and it is thus compo-
sitional). We are aware that these methods cannot
eliminate all unsuitable pairs, but the data is much
less noisy now. Future work may attempt to do a
better filtering of non-compositional pairs. 4475
pairs are left, from which we further exclude the
ones where one of the words of the phrase is also
the target (e.g. abdominal muscle - abdominal)
and we get 1914 final pairs. 50% of that set forms
the held-out set used for tuning purposes (Section
3) and the rest of the dataset is used for the evalu-
ation of the methods.

We also evaluate our methods on a second
dataset, the only other dataset we could find fulfill-
ing the requirements of our task5: the noun-noun
set created by Zanzotto et al. (2010) (ZZ from now
on). This set contains the same data format (bi-
gram phrases-unigram paraphrase) and includes
1066 positive examples, i.e. examples where the

3https://github.com/kkalouli/
compositional_phrase_vectors

4The Turney (2012) set was also scraped from WordNet
but we observed that this set and our scraped set were not
subsets, probably due to changes on WordNet over the years
or differences in the scraping process.

5The probably most popular dataset of Mitchell and La-
pata (2010) was not suitable due to its format (no unigram
as comparison element) and the nature of the data, i.e. no
truly synonymous/paraphrastic phrases-targets, merely simi-
lar pairs; also observed by Wieting et al. (2015)
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paraphrase is a valid one for this phrase, and 379
negative ones, where the unigram is not a para-
phrase of the bigram.6

Data preprocessing Since the goal of this work
is to examine the efficiency of the proposed con-
straints for the compositionality of the vectors,
we use pretrained embeddings; however training
more specific embeddings or using state-of-the-
art context-aware embeddings (e.g. Devlin et al.
(2018); Peters et al. (2018)) could be even more
beneficial for the approaches. In fact, by using
such contextualized embeddings, our constraints
could better handle polysemous words as the
base embeddings would be partly disambiguated
from the context. For now, the two datasets are
first matched to the pretrained GloVe (Penning-
ton et al., 2014) embeddings,7 so that each phrase
component and target word are mapped to their
embedding. Then, a module determines whether
the phrase is mody, heady or equal, based on the
procedure described in Section 3.1. This proce-
dure results into 895/515 heady, 792/190 mody
and 227/119 equal for our set and the ZZ set, re-
spectively. So, pairs like black magic - sorcery and
body armor - cataphract become “heady”, arche-
ological site - dig and baseball player - ballplayer
“mody”, and dramatic art - dramaturgy and fe-
male parent - mother “equal”.

4.3 Evaluation Tasks

To compare the approaches, we employed 6 eval-
uations tasks, aiming at testing different semantic
aspects of the phrases. Our goal is to see which of
the 13 methods perform best in each of the tasks.
We include popular tasks, like synonymy detec-
tion and concept clustering (see, e.g., Baroni et al.,
2014; Schnabel et al., 2015), but we do not employ
the human similarity judgments task. We are not
convinced that semantic similarity can be scaled in
a range of 1 to 7 as we are not sure how one should
decide, e.g., between a 3 and a 4. Such criticisms
were also discussed by Faruqui et al. (2016).

Plain similarity One of the most common in-
trinsic evaluation tasks is the semantic similarity
between an item and a target. Since targets are
part of our dataset, the simplest task is to calculate

6For our purposes, we excluded pairs containing proper
names in capital due to the lack of pretrained embeddings for
those, resulting in a set of 824 pairs.

7Trained on Wikipedia 2014 and Gigaword 5, 300 dim.

the cosine similarity between the composed vector
of a phrase and the embedding of its target.

Precision This task is a modification of the anal-
ogy task of Mikolov et al. (2013). Given a phrase
vector and its neighbors in the semantic space,
we check if the target word is its closest neighbor
(cf. Baroni and Zamparelli (2010); Mikolov et al.
(2013)). The task is also undertaken for the next
two closest neighbors of the phrase. Ultimately,
we measure Precision@1, Precision@2 and Pre-
cision@3, respectively, for how many items of
our set had their targets as neighbors at the cor-
responding positions.

Overlapping neighbors Here we measure how
many neighbors of the phrase representation are
also neighbors of the target embedding. Since em-
beddings capture the relational co-occurrences of
words, it should be the case that the phrase and
the target vectors share neighbors. This would
mean that they are closer in the semantic space
than items not sharing any neighbors, even if the
target word itself is not a neighbor of the phrase
embedding.

Synonymy detection This popular task, first ap-
plied on the TOEFL examples for word embed-
dings (Landauer and Dumais, 1997), is to select
out of some candidate targets, the one with the
highest similarity to the given word. Similarly, (cf.
Turney, 2012) we create a set of 7 candidate uni-
grams for each given phrase: its syntactic modi-
fier, its syntactic head, its target, a synonym of its
syntactic modifier and of its syntactic head8 and
two random words. We compute the similarity of
the phrase representation to each of those and cre-
ate a ranked list of the 7 candidates. Targets that
are lower in the ranked list are penalized and tar-
gets that are higher up are boosted; conversely for
the random words. Ultimately, we obtain a score
between -1 and 1, with -1 being the worst with a
random word at rank 1 and the target at the last
rank and 1 standing for the best case where the
target is at rank 1 and the randoms last.

Clustering A popular task is concept catego-
rization or clustering. Given a set of concepts, the
task is to group them into categories. We adjust
this task to measure how many of the phrase rep-
resentations are clustered together with their target
embedding. If the phrase vector truly expresses

8Extracted from WordNet.
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Created dataset ZZ dataset
Method Sim Pr@1 Pr@2 Pr@3 OveNei Syn Clus DistSim
only head 21.6 1.3 2.3 3.3 0.92 0.17 5.2 2.82E-31
only mod 20.6 4.5 6.8 8.3 1.08 0.16 3.5 6.68E-52
sd (Const1 + Const2) 28.5 5.6 8.4 10.3 1.80 0.23 6.7 1.09E-41
mod-sd (Const1 + Const2) 28.0 6.0 8.3 10.1 1.75 0.17 6.8 6.71E-47
add 26.3 4.1 7.6 9.2 1.54 0.16 4.9 9.43E-49
mult -0.5 0.0 0.0 0.0 0.01 -0.37 1.7 0.0801
aver 26.3 4.1 7.6 9.2 1.54 0.16 5.9 9.43E-49
comb 25.9 4.4 7.6 10.0 1.65 0.17 4.9 3.58E-44
add+Const1 29.0 5.7 8.9 10.4 1.80 0.18 7.0 8.58E-47
aver+Const1 29.0 5.7 8.9 10.4 1.80 0.18 4.1 8.58E-47
comb+Const1 29.2 5.7 8.5 11.0 1.85 0.19 7.0 6.27E-46
feedforward NN 24.0 0.2 0.2 0.2 0.36 0.24 0.5 -
matr-vec (Zanzotto et al., 2010) - - - - - - - 1.00E-10

Table 1: Overview of all compared methods across the 6 evaluation tasks. The notation +Const1 is added to
the methods containing the semantic contribution constraint (Constraint One). The metric given for each task is
the average metric across the entire dataset. Numbers in boldface mark the best performance per task. Multiple
numbers may be in boldface in the same task, if there is no statistically significant difference between them.

meaning, the two should be clustered together.
We use k-means clustering with 1914 clusters (as
many as the pairs of our set) and 99 iterations.

Positive-Negative Similarity Distribution This
task is the original used by Zanzotto et al. (2010),
so we only apply it on the ZZ set. Here, we test
if the distribution of the cosine similarities of the
positive pairs is statistically different from the dis-
tribution of the similarities of the negative pairs:
if it is, it means that the corresponding functions
perform well because they can keep the two cate-
gories apart (see Zanzotto et al. (2010) for more
details). As in the original experiment, the re-
sults show p-values, calculated with the Students t-
test for two independent samples of different sizes:
lower values characterize better models.

4.4 Results

In Table 1 we list all 13 methods compared in this
work and their performance across all evaluation
tasks. To test for statistical significance, the results
were first grouped into categories and were ana-
lyzed using linear mixed effects regression models
with the corresponding conditions (Method and
Constraint) as fixed factors and random intercepts
for the phrases of the dataset.9 P-values were
calculated using the Satterthwaite approximation
of degrees-of-freedom in the R-package lmerTest

9The models further included random slopes for the
within-group factors when this improved the fit of the model,
as determined by LogLikelihood comparisons, using the R-
function anova().

(Kuznetsova et al., 2017). The above process was
done separately for each of the evaluation tasks.

Within the separate categories, the models
showed main effects and interactions of both
Method and Constraint across all tasks. The pro-
posed sd and mod− sd functions (lines 3-4 of Ta-
ble 1) perform statistically the same across tasks:
sd does outperform mod − sd in the Syn task but
the latter outperforms the former in the DistSim
task, so that they exhibit an equal behavior. Con-
cerning the baselines, the methods of addition, av-
erage and combined addition-multiplication (lines
5-8) perform statistically the same across tasks but
heavily outperform the multiplication approach
(contrary to Mitchell and Lapata (2010) but sim-
ilar to Boleda et al. (2013)). The same opera-
tions but with our semantic contribution constraint
(baselines+Const1, lines 9-11) also perform sta-
tistically the same across tasks.

More interesting are the overall results across
categories: here, there is a main effect of Method.
In the Sim task, in all three precision tasks, in
OveNei and in Clus, the proposed sd andmod−sd
together with the baselines+Const1 are statisti-
cally best without any difference between them.
In the Syn task, the sd and the NN10 provide
the statistically best results, with the addition-

10It is not surprising that the NN performs that well in this
task. Since the NN is trained to learn/resemble the target em-
bedding, its similarity to this specific target is higher than to
other words on which it has not been trained. Thus, here it
achieves better accuracy than in other tasks as it’s the relative
similarity to the target vs. to the other words that is measured.
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multiplication+Const1 operation following. For
the DistSim task, mod− sd, the addition+Const1
and average+Const1 as well as the simple base-
lines perform best and all methods outperform
what is reported by Zanzotto et al. (2010).

5 Discussion

The first proposed constraint of this paper, the se-
mantic contribution of heads and modifiers, proves
powerful: the +Const1 addition, average and com-
bined addition-multiplication operations heavily
outperform their counterparts without the con-
straint and come to be the statistically best in 5 of
the 6 tasks, also outperforming the NN and Zan-
zotto et al.’s approach. This confirms that the se-
mantic contribution constraint is indeed beneficial:
it’s the semantic contribution of the phrase compo-
nents that should be considered for the weighting
and not the syntactic role. The fact that this con-
straint boosts simple baselines like the ones pre-
sented here shows the potential in exploring how
it could also boost other existing (deep) models.

On the other hand, the dimensions’ selection
constraint proposed in sd and mod− sd performs
statistically best in 5 of the 6 tasks. They outper-
form the non-compositional baselines (only head
and only mod), showing that they indeed capture
compositionality. They also outperform the stan-
dard baselines, the NN and Zanzotto et al.’s ap-
proach. This result shows the benefits of our pro-
posed functions: selecting only those dimensions
of the semantic modifier that are relevant to the
head, i.e. implementing the intuition of functional
application of one vector onto the other, but rely-
ing on semantic heads and modifiers as opposed to
syntactic ones. Both functions have a heavier pres-
ence of semantic head dimensions than semantic
modifier dimensions due to their composition pro-
cess (see Section 3.2). From this we can conclude
that compositional vectors are more efficient when
more semantic head attributes than semantic mod-
ifier attributes are present. Between the two ap-
proaches there is no apparent difference: sd is bet-
ter in the Syn task and mod− sd in DistSim. Fur-
ther evaluation tasks will have to determine any
performance differences. mod− sd might be able
to capture more information because it combines
the semantic modifier dimensions with the dimen-
sions of the constructed functional vector which
contains the semantic head attributes “dilated” in
the direction of the semantic modifier.

The tasks included in the current evalua-
tion show no real differences between the pro-
posed methods sd and mod − sd and the base-
lines+Const1, which might raise some doubt on
the real value and powerfulness of the dimensions’
selection constraint. However, the goal of this
work was to test the intuition behind this approach
and see whether it can compete with other state-
of-the-art results. In that respect, the results are
promising. Particularly, we expect that the pro-
posed functions can be improved with further fine-
tuning of the dimensions’ selection process to out-
perform the standard baselines. On the contrary,
the baseline operations have less room for im-
provement. We hope that future tasks can show
more clearly the weaknesses and strengths of each
approach. We are particularly interested in test-
ing this approach on other types of phrases, e.g.
verb phrases (VP), to see how our two constraints
generalize. For example, concerning our first con-
straint, for English VPs containing a verb and an
object, we expect all verbs to behave as semantic
heads (and the objects as semantic modifiers) ex-
cept for light verbs, where the objects should be
the semantic heads. In fact, preliminary experi-
menting with VPs shows that both constraints can
be extended to them with promising results.

6 Conclusion

In this paper, we proposed two novel con-
straints for composing linguistically-informed and
intuitively-explainable nominal phrase vectors.
After a thorough evaluation, we showed that these
constraints lead to more expressive phrase vec-
tors, outperforming popular baselines. Other eval-
uation tasks might prove more suitable for show-
ing specific strengths and weaknesses of the pro-
posed constraints. In the future, we wish to ap-
ply our approach to other kinds of phrases, e.g.,
verb phrases, and try to derive a representation for
a whole sentence by iteratively combining the dif-
ferent constituent phrases of the sentence through
the proposed constraints. Additionally, we would
like to train a better semantic contribution classi-
fier and make it openly available for use.
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Abstract

Recent advances in language modeling using
deep neural networks have shown that these
models learn representations, that vary with
the network depth from morphology to seman-
tic relationships like co-reference. We apply
pre-trained language models to low-resource
named entity recognition for Historic Ger-
man. We show on a series of experiments that
character-based pre-trained language models
do not run into trouble when faced with low-
resource datasets. Our pre-trained character-
based language models improve upon classical
CRF-based methods and previous work on Bi-
LSTMs by boosting F1 score performance by
up to 6%. Our pre-trained language and NER
models are publicly available1.

1 Introduction

Named entity recognition (NER) is a central com-
ponent in natural language processing tasks. Iden-
tifying named entities is a key part in systems e.g.
for question answering or entity linking. Tradi-
tionally, NER systems are built using conditional
random fields (CRFs). Recent systems are us-
ing neural network architectures like bidirectional
LSTM with a CRF-layer ontop and pre-trained
word embeddings (Ma and Hovy, 2016; Lample
et al., 2016a; Reimers and Gurevych, 2017; Lin
et al., 2017).

Pre-trained word embeddings have been shown
to be of great use for downstream NLP tasks
(Mikolov et al., 2013; Pennington et al., 2014).
Many recently proposed approaches go beyond
these pre-trained embeddings. Recent works have
proposed methods that produce different represen-
tations for the same word depending on its contex-
tual usage (Peters et al., 2017, 2018a; Akbik et al.,
2018; Devlin et al., 2018). These methods have

1https://github.com/stefan-it/
historic-ner

shown to be very powerful in the fields of named
entity recognition, coreference resolution, part-of-
speech tagging and question answering, especially
in combination with classic word embeddings.

Our paper is based on the work of Riedl and
Padó (2018). They showed how to build a model
for German named entity recognition (NER) that
performs at the state of the art for both con-
temporary and historical texts. Labeled histori-
cal texts for German named entity recognition are
a low-resource domain. In order to achieve ro-
bust state-of-the-art results for historical texts they
used transfer-learning with labeled data from other
high-resource domains like CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003) or GermEval
(Benikova et al., 2014). They showed that using
Bi-LSTM with a CRF as the top layer and word
embeddings outperforms CRFs with hand-coded
features in a big-data situation.

We build up upon their work and use the same
low-resource datasets for Historic German. Fur-
thermore, we show how to achieve new state-of-
the-art results for Historic German named entity
recognition by using only unlabeled data via pre-
trained language models and word embeddings.
We also introduce a novel language model pre-
training objective, that uses only contemporary
texts for training to achieve comparable state-of-
the-art results on historical texts.

2 Model

In this paper, we use contextualized string embed-
dings as proposed by Akbik et al. (2018), as they
have shown to be very effective in named entity
recognition. We use the FLAIR2 (Akbik et al.,
2018) library to train all NER and pre-trained lan-
guage models. We use FastText (Wikipedia and

2https://github.com/zalandoresearch/
flair
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Figure 1: High level overview of our used model. A
sentence is input as a character sequence into a pre-
trained bidirectional character language model. From
this LM, we retrieve for each word a contextual em-
bedding that we pass into a vanilla Bi-LSTM-CRF.

Crawl) as word embeddings. FLAIR allows us to
easily combine (“stacking”) different embeddings
types. For instance, Lample et al. (2016b) com-
bine word embeddings with character features. In
our experiments we combined several embedding
types and language models. Contextualized string
embeddings were trained with a forward and back-
ward character-based language model (LSTM) on
two historic datasets. This process is further called
“pre-training”. We use a Bi-LSTM with CRF on
top as proposed by Huang et al. (2015). A high
level system overview of our used model is shown
in figure 1.

3 Datasets

We use the same two datasets for Historic German
as used by Riedl and Padó (2018). These datasets
are based on historical texts that were extracted
(Neudecker, 2016) from the Europeana collection
of historical newspapers3. The first corpus is the
collection of Tyrolean periodicals and newspapers
from the Dr Friedrich Temann Library (LFT). The
LFT corpus consists of approximately 87,000 to-
kens from 1926. The second corpus is a collection
of Austrian newspaper texts from the Austrian Na-
tional Library (ONB). The ONB corpus consists
of approximately 35,000 tokens from texts created
between 1710 and 1873.

The tagset includes locations (LOC), organiza-
tions (ORG), persons (PER) and the remaining en-
tities as miscellaneous (MISC). Figures 1-2 con-
tain an overview of the number of named enti-
ties of the two datasets. No miscellaneous enti-
ties (MISC) are found in the ONB dataset and only

3https://www.europeana.eu/portal/de

a few are annotated in the LFT dataset. The two
corpora pose three challenging problems: they are
relatively small compared to contemporary cor-
pora like CoNLL-2003 or GermEval. They also
have a different language variety (German and
Austrian) and they include a high rate of OCR er-
rors4 since they were originally printed in Gothic
type-face (Fraktur), a low resource font, which has
not been the main focus of recent OCR research.

Dataset LOC MISC ORG PER

Training 1,605 0 182 2,674
Development 207 0 10 447
Test 221 0 16 355

Table 1: Number of named entities in ONB dataset.

Dataset LOC MISC ORG PER

Training 3,998 2 2,293 4,009
Development 406 0 264 558
Test 441 1 324 506

Table 2: Number of named entities in LFT dataset.

4 Experiments

4.1 Experiment 1: Different Word
Embeddings

In the first experiment we use different types of
embeddings on the two datasets: (a) FastText
embeddings trained on German Wikipedia arti-
cles, (b) FastText embeddings trained on Common
Crawl and (c) character embeddings, as proposed
by Lample et al. (2016b). We use pre-trained Fast-
Text embeddings5 without subword information,
as we found out that subword information could
harm performance (0.8 to 1.5%) of our system in
some cases.

Table 3 shows, that combining pre-trained Fast-
Text for Wikipedia and Common Crawl leads to a
F1 score of 72.50% on the LFT dataset. Adding
character embeddings has a positive impact of
2% and yields 74.50%. This result is higher
than the reported one by Riedl and Padó (2018)

4Typical OCR errors would be segmentation and hyphen-
ation errors or misrecognition of characters (e.g. B i f m a r c k
instead of B i s m a r c k).

5https://fasttext.cc/docs/en/
crawl-vectors.html
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Configuration F-Score

L
FT

Wikipedia 69.59%
Common Crawl 68.97%
Wikipedia + Common Crawl 72.00%
Wikipedia + Common Crawl + Character 74.50%
Riedl and Padó (2018) (no transfer-learning) 69.62%
Riedl and Padó (2018) (with transfer-learning) 74.33%

O
N

B
Wikipedia 75.80%
CommonCrawl 78.70%
Wikipedia + CommonCrawl 79.46%
Wikipedia + CommonCrawl + Character 80.48%
Riedl and Padó (2018) (no transfer-learning) 73.31%
Riedl and Padó (2018) (with transfer-learning) 78.56%

Table 3: Results on LFT and ONB dataset with different configurations. Wikipedia and Common Crawl are pre-
trained FastText word embeddings. The best configurations reported by Riedl and Padó (2018) used Wikipedia or
Europeana word embeddings with subword information and character embeddings.

Figure 2: Temporal overlap for language model cor-
pora and historic datasets.

(74.33%), who used transfer-learning with more
labeled data. Table 3 also shows the same ef-
fect for ONB: combining Wikipedia and Common
Crawl embeddings leads to 79.46% and adding
character embeddings marginally improves the re-
sult to 80.48%. This result is also higher than the
reported one by Riedl and Padó (2018) (78.56%).

4.2 Experiment 2: Language model
pre-training

For the next experiments we train contextualized
string embeddings as proposed by Akbik et al.
(2018). We train language models on two datasets
from the Europeana collection of historical news-
papers. The first corpus consists of articles from
the Hamburger Anzeiger newspaper (HHA) cov-
ering 741,575,357 tokens from 1888 - 1945. The
second corpus consists of articles from the Wiener
Zeitung newspaper (WZ) covering 801,543,845
tokens from 1703 - 1875. We choose the two cor-
pora, because they have a temporal overlap with
the LFT corpus (1926) and the ONB corpus (1710

- 1873). Figure 2 shows the temporal overlap for
the language model corpora and the datasets used
in the downstream task. There is a huge temporal
overlap between the ONB dataset and the WZ cor-
pus, whereas the overlap between the LFT dataset
and the HHA corpus is relatively small.

Additionally we use the BERT model, that was
trained on Wikipedia for 104 languages6 for com-
parison. We perform a per-layer analysis of the
multi-lingual BERT model on the development set
to find the best layer for our task. For the Ger-
man language model, we use the same pre-trained
language model for German as used in Akbik et al.
(2018). This model was trained on various sources
(Wikipedia, OPUS) with a training data set size of
half a billion tokens.

Table 4 shows that the temporal aspect of train-
ing data for the language models has deep im-
pact on the performance. On LFT (1926) the lan-
guage model trained on the HHA corpus (1888
- 1945) leads to a F1 score of 77.51%, which
is a new state-of-the art result on this dataset.
The result is 3.18% better than the result reported
by Riedl and Padó (2018), which uses transfer-
learning with more labeled training data. The lan-
guage model trained on the WZ corpus (1703-
1875) only achieves a F1 score of 75.60%, likely
because the time period of the data used for pre-
training (19th century) is too far removed from

6https://github.com/
google-research/bert/blob/
f39e881b169b9d53bea03d2d341b31707a6c052b/
multilingual.md
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Configuration Pre-trained LM Pre-training data F-Score

L
FT

(1
92

6)
German X Wikipedia, OPUS 76.04%

Hamburger Anzeiger (HHA) X Newspaper (1888 - 1945) 77.51%
Wiener Zeitung (WZ) X Newspaper (1703 - 1875) 75.60%
Multi-lingual BERT X Wikipedia 74.39%

SMLM (synthetic corpus) X Wikipedia 77.16%
Riedl and Padó (2018) - - 69.62%
Riedl and Padó (2018)† - - 74.33%

O
N

B
(1

71
0-

18
73

) German X Wikipedia, OPUS 80.06%
Hamburger Anzeiger (HHA) X Newspaper (1888 - 1945) 83.28%

Wiener Zeitung (WZ) X Newspaper (1703 - 1875) 85.31%
Multi-lingual BERT X Wikipedia 77.19%

SMLM (synthetic corpus) X Wikipedia 82.15%
Riedl and Padó (2018) - - 73.31%
Riedl and Padó (2018)† - - 78.56%

Table 4: Results on LFT and ONB with different language models. The German language model refers to the
model used in Akbik et al. (2018). We perform a per-layer analysis for BERT on the development set and use the
best layer. For all experiments we also use pre-trained FastText embeddings on Wikipedia and Common Crawl as
well as character embeddings. † indicates the usage of additional training data (GermEval) for transfer learning.

that of the downstream task (mid-1920s). Table
4 also shows the results of pre-trained language
models on the ONB (1710 - 1873) dataset. The
language models, that were trained on contempo-
rary data like the German Wikipedia (Akbik et al.,
2018) or multi-lingual BERT do not perform very
well on the ONB dataset, which covers texts from
the 18-19th century. The language model trained
on the HHA corpus performs better, since there
is a substantially temporal overlap with the ONB
corpus. The language model trained on the WZ
corpus (1703-1875) leads to the best results with
a F1 score of 85.31%. This result is 6.75% better
than the reported result by Riedl and Padó (2018),
which again uses transfer-learning with addition-
ally labeled training data.

4.3 Experiment 3: Synthetic Masked
Language Modeling (SMLM)

We also consider the masked language modeling
(MLM) objective of Devlin et al. (2018). How-
ever, this technique cannot be directly used, be-
cause they use a subword-based language model,
in contrast to our character-based language model.
We introduce a novel masked language modeling
technique, synthetic masked language modeling
(SMLM) that randomly adds noise during training.

The main motivation for using SMLM is to trans-
fer a corpus from one domain (e.g. “clean” con-

temporary texts) into another (e.g. “noisy” histor-
ical texts). SMLM uses the vocabulary (characters)
from the target domain and injects them into the
source domain. With this technique it is possible
to create a synthetic corpus, that “emulates” OCR
errors or spelling mistakes without having any data
from the target domain (except all possible charac-
ters as vocabulary). Furthermore, SMLM can also
be seen as a kind of domain adaption.

To use SMLM we extract all vocabulary (char-
acters) from the ONB and LFT datasets. We re-
fer to these characters as target vocabulary. Then
we obtained a corpus consisting of contemporary
texts from Leipzig Corpora Collection (Goldhahn
et al., 2012) for German. The resulting corpus has
388,961,352 tokens. During training, the follow-
ing SMLM objective is used: Iterate overall charac-
ters in the contemporary corpus. Leave the char-
acter unchanged in 90% of the time. For the re-
maining 10% we employ the following strategy:
in 20% of the time replace the character with a
masked character, that does not exist in the tar-
get vocabulary. In 80% of the time we randomly
replace the character by a symbol from the target
vocabulary.

Table 4 shows that the language model trained
with SMLM achieves the second best result on LFT
with 77.16%. The ONB corpus is more chal-
lenging for SMLM, because it includes texts from
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a totally different time period (18-19th century).
SMLM achieves the third best result with a F-Score
of 82.15%. This result is remarkable, because the
language model itself has never seen texts from
the 18-19th century. The model was trained on
contemporary texts with SMLM only.

5 Data Analysis

LM
Perplexity

F-Score
Forward Backward

L
FT

German 8.30 8.7 76.04%
HHA 6.31 6.64 77.51%
WZ 6.72 6.97 75.60%

Synthetic 7.87 8.20 77.16%

O
N

B

German 8.58 8.77 80.06%
HHA 6.71 7.22 83.28%
WZ 4.72 4.95 85.31%

Synthetic 8.65 9.64 82.15%

Table 5: Averaged perplexity for all sentences in the
test dataset for LFT for all pre-trained language mod-
els.

The usage of pre-trained character-based lan-
guage models boosts performance for both LFT
and ONB datasets. The results in table 4 show,
that the selection of the language model corpus
plays an important role: a corpus with a large de-
gree of temporal overlap with the downstream task
performs better than corpus with little to no tem-
poral overlap. In order to compare our trained lan-
guage models with each other, we measure both
the perplexity of the forward language model and
the backward language model on the test dataset
for LFT and ONB. The perplexity for each sen-
tence in the test dataset is calculated and averaged.
The results for LFT and ONB are shown in ta-
ble 5. For all language models (except one) there
is a clear correlation between overall perplexity
and F1 score on the test dataset: lower perplexity
(both for forward and backward language model)
yields better performance in terms of the F1 score
on the downstream NER tasks. But this assump-
tion does not hold for the language model that
was trained on synthetic data via SMLM objective:
The perplexity for this language model (both for-
ward and backward) is relatively high compared
to other language models, but the F1 score results
are better than some other language models with
lower perplexity. This variation can be observed

both on LFT and ONB test data. We leave this
anomaly here as an open question: Is perplexity a
good measure for comparing language models and
a useful indicator for their results on downstream
tasks?

The previous experiments show, that language
model pre-training does work very well, even
for domains with low data resources. Cotterell
and Duh (2017) showed that using CRF-based
methods outperform traditional Bi-LSTM in low-
resource settings. We argue that this shortcom-
ing can now be eliminated by using Bi-LSTMs
in combination with pre-trained language models.
Our experiments also showed, that pre-trained lan-
guage models can also help to improve perfor-
mance, even when no training data for the target
domain is used (SMLM objective).

6 Conclusion

In this paper we have studied the influence of us-
ing language model pre-training for named en-
tity recognition for Historic German. We achieve
new state-of-the-art results using carefully chosen
training data for language models.

For a low-resource domain like named entity
recognition for Historic German, language model
pre-training can be a strong competitor to CRF-
only methods as proposed by Cotterell and Duh
(2017). We showed that language model pre-
training can be more effective than using transfer-
learning with labeled datasets.

Furthermore, we introduced a new language
model pre-training objective, synthetic masked
language model pre-training (SMLM), that allows
a transfer from one domain (contemporary texts)
to another domain (historical texts) by using only
the same (character) vocabulary. Results showed
that using SMLM can achieve comparable results
for Historic named entity recognition, even when
they are only trained on contemporary texts.
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A Supplemental Material

A.1 Language model pre-training

Table 6 shows the parameters that we used for
training our language models. As our character-
based language model relies on raw text, no pre-
processing steps like tokenization are needed. We
use 1/500 of the complete corpus for development
data and another 1/500 for test data during the lan-
guage model training.

Parameter Value

LSTM hidden size 2048
LSTM layer 1
Dropout 0.1
Sequence length (characters) 250
Mini batch size 1
Epochs 1

Table 6: Parameters used for language model pre-
training.

A.1.1 SMLM objective

Original sentence
Dann habe der Mann erzählt, wie er in München am
Bahnhof mit Blumen begrüßt worden sei.
Sentence after SMLM transformation
Qa ¶n hab5 der MaRy erzählt nie er in Mn̈chenIam
Bahnhof mit Blumen begrüß( Corden se¶.

Figure 3: An example of the SMLM transformation for
a given input sentence. The special character “¶” is
used as masked character symbol.

Figure 3 shows the SMLM objective for a given
input sentence and the corresponding output. We
use the same parameters as shown in table 6 to
train a language model with SMLM objective. We
use different values of p in range of [80, 90, 95]
for leaving the character unchanged in the SMLM

objective and found that p = 90 yields the best
results.

A.2 Model parameters

Table 7 shows the parameters that we use for train-
ing a named entity recognition model with the
FLAIR library. We reduce the learning rate by a
factor of 0.5 with a patience of 3. This factor deter-
mines the number of epochs with no improvement
after which learning rate will be reduced.

Parameter Value

LSTM hidden size 512
Learning rate 0.1
Mini batch size 8
Max epochs 500
Optimizer SGD

Table 7: Parameters used for training NER models.

A.3 BERT per-layer analysis

We experimentally found that using the last four
layers as proposed in Devlin et al. (2018) for the
feature-based approach does not work well. Thus,
we perform a per-layer analysis that trains a model
with a specific layer from the multi-lingual BERT
model. Inspired by Peters et al. (2018b) we visu-
alize the performance for each layer of the BERT
model. Figure 4 shows the performance of each
layer for the LFT development dataset, figure 5 for
the ONB development dataset.

Figure 4: BERT per-layer analysis on the LFT devel-
opment dataset.

Figure 5: BERT per-layer analysis on the ONB devel-
opment dataset.

A.4 Evaluation

We train all NER models with IOBES (Ratinov
and Roth, 2009) tagging scheme. In the prediction
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step we convert IOBES tagging scheme to IOB,
in order to use the offical CoNLL-2003 evaluation
script7. For all NER models we train and evaluate
3 runs and report an averaged F1 score.

A.5 Negative Results
We briefly describe a few ideas we implemented
that did not seem to be effective in initial exper-
iments. These findings are from early initial ex-
periments. We did not pursue these experiments
further after first attempts, but some approaches
could be effective with proper hyperparameter tun-
ings.

• FastText embeddings with subword infor-
mation: We use subword information with
FastText embeddings trained on Wikipedia
articles. On LFT this model was 0.81%
behind a model trained with FastText em-
beddings without subword information. On
ONB the difference was 1.56%. Using both
FastText embeddings trained on Wikipedia
and CommonCrawl with subword informa-
tion caused out-of-memory errors on our sys-
tem with 32GB of RAM.

• ELMo Transformer: We trained ELMo
Transformer models as proposed by Peters
et al. (2018b) for both HH and WZ corpus.
We use the default hyperparameters as pro-
posed by Peters et al. (2018b) and trained a
ELMo Transformer model for one epoch (one
iteration over the whole corpus) with a vo-
cabulary size of 1,094,628 tokens both for
the HH and WZ corpus. We use the same
model architecture like in previous experi-
ments for training a NER model on both LFT
and ONB. On LFT we achieved a F1 score
of 72.18%, which is 5.33% behind our new
state-of-the-art result. On ONB we achieved
a F1 score of 75.72%, which is 9.59% behind
our new state-of-the-art result. We assume
that training a ELMo Transformer model for
more epochs would lead to better results.

7https://www.clips.uantwerpen.be/
conll2003/ner/bin/conlleval
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Abstract
Knowledge graph embedding models have re-
cently received significant attention in the lit-
erature. These models learn latent semantic
representations for the entities and relations in
a given knowledge base; the representations
can be used to infer missing knowledge. In
this paper, we study the question of how well
recent embedding models perform for the task
of knowledge base completion, i.e., the task of
inferring new facts from an incomplete knowl-
edge base. We argue that the entity ranking
protocol, which is currently used to evaluate
knowledge graph embedding models, is not
suitable to answer this question since only a
subset of the model predictions are evaluated.
We propose an alternative entity-pair ranking
protocol that considers all model predictions
as a whole and is thus more suitable to the
task. We conducted an experimental study on
standard datasets and found that the perfor-
mance of popular embeddings models was un-
satisfactory under the new protocol, even on
datasets that are generally considered to be too
easy. Moreover, we found that a simple rule-
based model often provided superior perfor-
mance. Our findings suggest that there is a
need for more research into embedding mod-
els as well as their training strategies for the
task of knowledge base completion.

1 Introduction

A knowledge base (KB) is a collection of rela-
tional facts, often represented as (subject, rela-
tion, object)-triples. KBs provide rich information
for NLP tasks such as question answering (Abu-
jabal et al., 2017) or entity linking (Shen et al.,
2015). Since knowledge bases are inherently in-
complete (West et al., 2014), there has been con-
siderable interest into methods that infer missing
knowledge.

In particular, a large number of knowledge
graph embedding (KGE) models have been pro-

posed in the recent literature (Nickel et al., 2016a).
These models embed the entities and relations of
a given knowledge base into a low-dimensional
latent space such that the structure of the knowl-
edge base is captured. The embeddings are subse-
quently used to assess whether unobserved triples
constitute missing facts or are likely to be false.

To evaluate the performance of a KGE model,
the most commonly adopted protocol is the en-
tity ranking (ER) protocol.1 The protocol takes as
input a set of previously unobserved test triples,
such as (Einstein, bornIn, Ulm), and uses the em-
bedding model to rank all possible answers to the
questions (?, bornIn, Ulm) and (Einstein, bornIn,
?). Model performance is then assessed based on
the rank of the answer present in the test triple
(Einstein and Ulm, resp.). Since each question is
constructed from a test triple, the protocol ensures
that questions are meaningful and always have a
correct answer. Throughout this paper, we refer to
the task of answering such questions as question
answering (QA). The ER protocol is, in principle,
well-suited to evaluate performance of KGE mod-
els for QA, although concerns about the bench-
mark datasets (Toutanova and Chen, 2015), the
considered models (Kadlec et al., 2017) and the
evaluation (Joulin et al., 2017) have been raised.

In this paper, we aim to study the performance
of popular embedding models for the task of
knowledge base completion (KBC): given a rela-
tion of a knowledge base (bornIn), infer true miss-
ing facts ((Einstein, bornIn, Ulm)). This task is
different from QA (as defined above) since no in-
formation about potential missing triples is pro-
vided upfront. We argue that the ER protocol is
not well-suited to assess model performance for
KBC. To see this, observe that models that assign
high confidence scores to incorrect triples such as

1We discuss other less adopted evaluation methods in
Sec. 3.2.

104



(Ulm, bornIn, Einstein) are not penalized by the
ER protocol because the corresponding questions
(e.g., (Ulm, bornIn, ?)) are never asked. Thus
a model that performs well on ER may still not
perform well for KBC. In fact, we argue here that
some commonly used KGE models are inherently
not well-suited to KBC.

We propose a simple entity-pair ranking (PR)
protocol (PR), which is more suitable to assess
model performance for KBC. Given a relation
such as bornIn, PR uses the KGE model to rank
all possible answers—i.e., all entity pairs—to the
question (?, bornIn, ?), and subsequently assesses
model performance based on the rank of the test
triples for relation bornIn in the answer. The pro-
tocol ensures that a model’s performance is nega-
tively affected if the model assigns high scores to
false triples such as (Ulm, bornIn, Einstein).

We conducted an experimental study on com-
monly used benchmark datasets under the ER and
the PR protocols. We found that the performance
of popular embeddings models was often good un-
der the ER but unsatisfactory under the PR proto-
col, even on “simple” datasets that are generally
considered to be too easy. Moreover, we found
that a simple rule-based model often provided su-
perior performance for PR. Our findings suggests
that there is a need for more research into embed-
ding models as well as their training strategies for
the task of knowledge base completion.

2 Preliminaries

Given a set of entities E and a set of relationsR, a
knowledge base K ⊆ E ×R× E is a set of triples
(i, k, j), where i, j ∈ E and k ∈ R. We refer to
i, k and j as the subject, relation, and object to the
triple, respectively.

Embedding models. A KGE model associates
an embedding ei ∈ Rde and rk ∈ Rdr with each
entity i and relation k, resp. We refer to de and
dr ∈ N+ as the size of the embeddings. Each
KGE model uses a scoring function s : E × R ×
E → R to associate a score s(i, k, j) to each triple
(i, k, j) ∈ E×R×E . The scores induce a ranking:
triples with high scores are considered more likely
to be true than triples with low scores. Roughly
speaking, the models try to find embeddings that
capture the structure of the entire knowledge graph
well. In this work, we consider a popular family
of embedding models called bilinear models.

Bilinear KGE models. Bilinear models use the
relation embedding rk ∈ Rdr to construct a mix-
ing matrix Rk ∈ Rde×de , and they use scoring
function s(i, k, j) = eTi Rkej . The models differ
mainly in how Rk is constructed. Unless stated
otherwise, the models use the same embedding
sizes for entities and relations (i.e., dr = de).

RESCAL (Nickel et al., 2011) is the most gen-
eral bilinear model: it sets dr = d2e and stores in
rk the values of each entry of Rk. Analogy (Liu
et al., 2017) constrains Rk ∈ Rde×de to a block
diagonal matrix in which each block is either (i) a

real scalar or (ii) a 2×2 matrix of form
(
x −y
y x

)

with x, y ∈ R. DistMult (Carroll and Chang,
1970; Yang et al., 2014) is a symmetric factor-
ization model with Rk = diag (rk) or, equiva-
lently, considers only case (i) of Analogy. Com-
plEx (Trouillon et al., 2016) and HolE (Nickel
et al., 2016b) are equivalent to a model that re-
stricts Rk to case (ii). TransE (Bordes et al., 2013)
is a translation-based model with scoring func-
tion s(i, k, j) = −‖ei + rk − ej‖2 (or ‖·‖1); it
can also be written in bilinear form (Wang et al.,
2018).

Rule learning. Rule learning methods derive
logical rules that encode dependencies found in
the KBs (Galárraga et al., 2013). We consider
a simple rule-based model called RuleN (Meil-
icke et al., 2018) as baseline. The model learns
(weighted) implication rules of form

r(i, j) ← r1(i, z1) ∧ · · · ∧ rn(zn, j)
r(i, c) ← ∃z.r(i, z)

where ri are relations, c is a constant entity, and
i, j, and zi are variables quantified over entities.
To perform KBC, rule-based models query the KB
for instances of the bodies of each rule and in-
terpret the corresponding head as (weighted) pre-
dicted fact.

3 Evaluation Protocols

We first review two widely used evaluation proto-
cols for QA. We then argue that these protocols are
not well-suited for assessing KBC performance,
because they focus on a small subset of all pos-
sible facts for a given relation. We then introduce
the entity-pair ranking (PR) protocol and discuss
its advantages and potential shortcomings.

105



3.1 Current Evaluation Protocols

The triple classification (TC) or the entity rank-
ing (ER) protocols are commonly used to assess
KGE model performance, where ER is arguably
the most widely adopted protocol. We assume
throughout that only true but no false triples are
available (as is commonly the case), and that the
available true triples are divided into training, val-
idation, and test triples.

Triple classification (TC) The goal of triple
classification is to test the model’s ability to dis-
criminate between true and false triples (Socher
et al., 2013). Since only true triples are available
in practice, pseudo-negative triples are generated
by randomly replacing either the subject or the ob-
ject of each test triple by a random entity (that ap-
pears as a subject or object in the considered re-
lation). All triples are then classified as positive
or negative according to the KGE scores. In par-
ticular, triple (i, k, j) is classified as positive if its
score s(i, k, j) exceeds a relation-specific decision
threshold τk (learned on validation data using the
same procedure). Model performance is assessed
by classification accuracy.

Entity ranking (ER) ER assesses model per-
formance by testing its ability to perform QA
(as defined before). In particular, for each test
triple t = (i, k, j), two questions qs = (?, k, j)
and qo = (i, k, ?) are generated. For question
qs, all entities i′ ∈ E are ranked based on the
score s(i′, k, j). To avoid misleading results, en-
tities i′ 6= i that correspond to observed triples
in the dataset—i.e., (i′, k, j) occurs in the train-
ing/validation/test triples—are discarded to obtain
a filtered ranking. The same process is applied
for question qo. Model performance is evaluated
based on the recorded positions of the test triples
in the filtered ranking. Models that tend to rank
test triples (known to be true) higher than un-
known triples (assumed to be false) are thus con-
sidered superior. Usually, the micro-average of fil-
tered Hits@K—i.e., the proportion of test triples
ranking in the top-K—and filtered MRR—i.e., the
mean reciprocal rank of the test triples—are used
to assess model performance.

3.2 Discussion

Wang et al. (2018) found that most models achieve
a TC accuracy of at least 93% on a benchmark
dataset. This is because each test triple is com-

pared against a single negative triple, and due to
the high number of possible negative triples, it is
unlikely that the chosen triple has a high predicted
score, rendering most classification tasks “easy”.
Consequently, the accuracy of triple classification
overestimates model performance. This protocol
is less adopted in recent work.

We argue that ER is appropriate to evaluate QA
performance, but may overestimate model perfor-
mance for KBC. Since ER generates questions
from true test triples, it only asks questions that
are known to have a correct answer. The ques-
tion itself thus provides useful information. This
perfectly matches QA, but it does not match KBC
where such information is not available.

To better illustrate why ER can lead to mislead-
ing assessment of a model’s KBC performance,
consider the DistMult model and the asymmetric
relation nominatedFor. As described in Sec. 2,
DistMult models all relations as symmetric in
that s(i, k, j) = s(j, k, i). Now consider triple
t = (H. Simon, nominatedFor, Nobel Prize), and
let us suppose that the model correctly assigns
t a high score s(t). Then the inverse triple
t′ = (Nobel Prize, nominatedFor, H. Simon) will
also obtain a high score since s(t′) = s(t). Thus
the score produced by DistMult does not discrim-
inate between the true triple t and the false triple
t′. In ER, however, questions about t′ are never
asked; there is no test triple for this relation con-
taining either Nobel Prize as subject or H. Simon
as object. The symmetry of DistMult’s prediction
thus barely affects its performance under the ER
protocol.

For another example, consider TransE and the
relation k = marriedTo, which is symmetric but
not reflexive. One can show that for all (i, k, j),
the TransE scores satisfy

s(i, k, j) + s(j, k, i)

= −‖ei + rk − ej‖ − ‖ej + rk − ei‖
≤ −‖ei + 0− ej‖ − ‖ej + 0− ei‖.

For symmetric relations, TransE should aim to as-
sign high scores to both (i, k, j) and (j, k, i). To
do so, TransE has the tendency to push the relation
embedding rk towards 0 as well as ei and ej to-
wards each other. But when rk ≈ 0, then s(i, k, i)
is high for all i, so that the relation is treated as if
it were reflexive. Again, in ER, this property only
slightly influences the results: there is only one
“reflexive” tuple in each filtered entity list so that
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the correct answer i for question (?, k, j) ranks at
most one position lower.

More expressive models such as RESCAL or
ComplEx do not have such inherent limitations.
Nevertheless, our experimental study shows that
these models (at least in the way are currently
trained) also tend to assign high scores to false
triples.

3.3 Entity-Pair Ranking Protocol
We propose a simple alternative protocol called
entity-pair ranking (PR). The protocol is more
suitable to assess a model’s KBC performance (al-
though it is not without flaws either; see below).
PR proceeds as follows: for each relation k, we
use the KGE model to rank all triples for a speci-
fied relation k, i.e., to rank all answers to question
(?, k, ?). As in ER, we filter out all triples that oc-
cur in the training and validation data to obtain a
filtered ranking, i.e., to only rank triples that were
not used during model training. If a model tends
to assign a high score to negative triples, its perfor-
mance is likely to be negatively affected because
it becomes harder for true triples to rank high.

Note that the number of candidate answers con-
sidered by PR is much larger than those consid-
ered by ER. Consider a relation k and let Tk be
the set of test triples for relation k. Then ER con-
siders 2|Tk| |E| candidates in total during evalua-
tion, while PR considers |E|2 candidates. More-
over, PR considers all test triples in Tk simulta-
neously instead of sequentially. For this reason,
we cannot use the MRR metric commonly used in
ER. Instead, we assess model performance using
weighted MAP@K—i.e., the weighted mean av-
erage precision in the top-K filtered results—and
weighted Hits@K—i.e., the weighted percentage
of test triples in the top-K filtered results. We
weight the influence of relation k proportionally
to its number of test triples (capped at K), thereby
closely following ER:

MAP@K =
∑

k∈R
APk@K ×

min(K, |Tk|)∑
k′∈R

min(K, |Tk′ |)

Hits@K =
∑

k∈R
Hitsk@K ×

min(K, |Tk|)∑
k′∈R

min(K, |Tk′ |)
.

Here APk@K is the average precision of the top-
K list (w.r.t. test triples Tk) and Hitsk@K refers to
the fraction of test triples in the top-K list. Note
that K should be chosen much larger for PR than

Dataset |E| |R| |T train| |T val| |T test|
FB15K 14 951 1 345 483 142 50 000 59 071
FB-237 14 505 237 272 115 17 535 20 466
WN18 40 943 18 141 442 5 000 5 000
WNRR 40 559 11 86 835 2 824 2 924

Table 1: Dataset statistics

for ER since it roughly corresponds to the number
of triples we aim to predict for relation k.

The PR protocol is more suited to evaluate KBC
performance because it considers all model pre-
dictions. The protocol also has some disadvan-
tages, however. First, as ER, the PR protocol
may underestimate model performance due to un-
observed true triples ranked high by the model.
Since a larger number of candidates is consid-
ered, PR may be more sensitive to this problem
than ER. We explore the effect of underestima-
tion in our empirical study in Sec. 4.4. Another
concern with PR is its potentially high computa-
tional cost. For current benchmark datasets, we
found that the PR evaluation is feasible. Gener-
ally, one may argue that an embedding model is
suitable for KBC only if it is feasible to determine
high-scoring triples in a sufficiently efficient way.
Since PR only requires the computation of the top-
K predictions, performance can potentially be im-
proved using techniques such as maximum inner-
product search Shrivastava and Li (2014).

4 Experimental Study

We conducted an experimental study to assess the
performance of various bilinear embedding mod-
els for KBC.2 All datasets, experimental results,
and source code are publicly available.3 For all
models, we performed evaluation under both the
ER and PR protocols in order to assess their per-
formance for the QA and KBC tasks, respectively.
We found that many KGE models provided good
ER but low PR performance. We also considered a
simple rule-based system called RuleN (Meilicke
et al., 2018), which provided good performance
under the ER protocol, and found that RuleN per-
formed better in both ER and PR. Our results im-
ply that more research into KGE models for KBC
is needed.

We also investigated the extent to which PR

2Some other KGE models do not support KBC directly
due to their architecture; e.g., ConvE (Dettmers et al., 2018).

3http://www.uni-mannheim.de/dws/
research/resources/kge-eval/
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underestimates model performance due to unob-
served true triples. We found that underestimation
is not the main reason for the low PR performance
of many KGE models; in fact, many KGE models
ranked high clearly wrong tuples (e.g., with incor-
rect types).

4.1 Experimental Setup
Datasets. We used the four common KBC
benchmark datasets: FB15K, WN18, FB-237, and
WNRR. The latter two datasets were created since
the former two datasets were considered too easy
for embedding models (based on ER). Key dataset
statistics are summarized in Table 1.

Negative sampling. We trained the embedding
models using negative sampling to obtain pseudo-
negative triples. We consider three sampling
strategies in our experiments:
Perturb 1: For each training triple t = (i, k, j),
sample pseudo-negative triples by randomly re-
placing either i or j with a random entity (but
such that the resulting triple is unobserved). This
strategy matches ER, which is based on questions
(?, k, j) and (i, k, ?).
Perturb 1-R: For each training triple t = (i, k, j),
sample pseudo-negative triples by randomly re-
placing either i, k or j. The generated nega-
tive samples are not compared with the training
set (Liu et al., 2017).
Perturb 2: For each training triple t = (i, k, j), ob-
tain pseudo-negative triples by randomly sampling
unobserved tuples for relation k. This method ap-
pears more suited to PR.

Training and implementation. We trained
DistMult, ComplEx, Analogy and RESCAL with
AdaGrad (Duchi et al., 2011) using binary cross-
entropy loss. We used pair-wise ranking loss for
TransE (as it always produces negative scores).
All embeddding models are implemented on top
of the code of Liu et al. (2017)4 in C++ using
OpenMP. For RuleN, we use the original imple-
mentation provided by the authors. The evalua-
tion protocols were written in Python, with Bot-
tleneck5 used for efficiently obtaining the top-K
entries for PR. We found PR (which took ≈30–90
minutes) was about 3–4 times slower than ER .

Hyperparameters. The best hyperparameters
were selected based on MRR (for ER) and

4https://github.com/quark0/ANALOGY
5https://pypi.org/project/Bottleneck/

MAP@100 (for PR) on the validation data. For
both protocols, we performed an exhaustive grid
search over the following hyperparameter set-
tings: de ∈ {100, 150, 200}, weight of l2-
regularization λ ∈ {0.1, 0.01, 0.001}, learning
rate η ∈ {0.01, 0.1}, negative sampling strategies
Perturb 1, Perturb 2 and Perturb 1-R,6 and margin
hyperparameter γ ∈ {0.5, 1, 2, 3, 4} for TransE.
For each training triple, we sampled 6 pseudo-
negative triples. To keep effort tractable, we only
used the most frequent relations from each dataset
for hyperparameter tuning (top-5, top-5, top-15,
and top-30 most frequent relations for WN18,
WNRR, FB-237 and FB-15k, respectively). We
trained each model for up to 500 epochs during
grid search. In all cases, we evaluated model per-
formance every 50 epochs and used the overall
best-performing model. For RuleN, we used the
best settings reported by the authors for ER (Meil-
icke et al., 2018). For PR, we learned path rules of
length 2 using a sampling size of 500 for FB15K
and FB-237. For WN18 and WNRR, we learned
path rules of length 3 and sampling size of 500.

4.2 Performance Results with ER

Table 2 summarizes the ER results. Embed-
ding models perform competitively with respect
to RuleN on all datasets, except for their MRR
performance on FB15K. Notice that this generally
holds even for the more restricted models (TransE
and DistMult) on the more challenging datasets,
which were created after criticizing FB15K and
WN18 as too easy (Toutanova and Chen, 2015;
Dettmers et al., 2018). In particular, although
DistMult can only model symmetric relations,
and although most relations in these datasets are
asymmetric, DistMult has good ER performance.
Likewise, TransE achieved great performance in
Hits@10 on all datasets, including WN18 which
contains a large number of symmetric relations,
which are not easily modeled by TransE.

4.3 Performance Results with PR

The evaluation results of PR with K = 100 are
summarized in Table 3. Note that Tables 2 and 3
are not directly comparable: they measure differ-
ent tasks. Also note that we use a different value
of K, which in PR corresponds to the number of
predicted facts per relation. We discuss the effect
of the choice of K later.

6We found that Perturb-2 can be useful in both protocols.
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Dataset FB15K FB-237 WN18 WNRR
Model MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@10
DistMult 0.660 0.845 0.270 0.432 0.790 0.937 0.432 0.474
TransE 0.500 0.777 0.290 0.466 0.720 0.908 0.220 0.491
ComplEx 0.700 0.835 0.280 0.435 0.940 0.948 0.440 0.481
Analogy 0.700 0.836 0.270 0.433 0.941 0.942 0.440 0.486
RESCAL 0.464 0.699 0.270 0.427 0.920 0.939 0.420 0.447

RuleN 0.805 0.870 0.260 0.420 0.950 0.958 — 0.536

Table 2: Results with the entity ranking protocol (ER), which assesses QA performance

Dataset FB15K FB-237 WN18 WNRR
Model MAP@100 Hits@100 MAP@100 Hits@100 MAP@100 Hits@100 MAP@100 Hits@100
DistMult 0.013 0.104 0.030 0.042 0.079 0.097 0.141 0.178
TransE 0.211 0.363 0.079 0.176 0.223 0.315 0.020 0.013
ComplEx 0.311 0.486 0.071 0.166 0.825 0.904 0.168 0.200
Analogy 0.188 0.348 0.049 0.143 0.776 0.874 0.154 0.198
RESCAL 0.150 0.303 0.067 0.150 0.482 0.609 0.131 0.138

RuleN 0.774 0.837 0.076 0.158 0.948 0.968 0.215 0.251

Table 3: Results with the entity-pair ranking protocol (PR), which assesses KBC performance

For the embeddings, observe that with the ex-
ception of Analogy and ComplEx on WN18, the
performance of all models is unsatisfactory on all
datasets, especially when compared with RuleN
on FB15K and WN18, which were previously
considered to be too easy for embedding models.
Specifically, DistMult’s Hits@100 is slightly less
than 10% on WN18, meaning that if we add the
top 100 ranked triples to the KB, over 90% of what
is added is likely false. Even when using Com-
plEx, the best model on FB15K, we would poten-
tially add more than 50% false triples. This im-
plies that embedding models cannot capture sim-
ple rules successfully. The notable exceptions are
ComplEx and Analogy on WN18, although both
are still behind RuleN. TransE and DistMult did
not achieve competitive results on WN18. In addi-
tion, DistMult did not achieve competitive results
on FB15K and FB-237 and TransE did not achieve
competitive results in WNRR. In general, Com-
plEx and Analogy performed consistently better
than other models across different datasets. When
compared with the RuleN baseline, however, the
performance of these models was often not sat-
isfactory. This suggests that better KGE models
and/or training strategies are needed for KBC.

RuleN did not perform well on FB-237 and
WNRR, likely because the way these datasets
were constructed makes them intrinsically diffi-
cult for rule-based methods (Meilicke et al., 2018).
This is reflected in both ER and PR results.

To better understand the change in performance
of TransE and DistMult, we investigated their pre-
dictions for the top-5 most frequent relations on
WN18. Table 4 shows the number of test triples
appearing in the top-100 for each relation (after fil-
tering triples from the training and validation sets).
The numbers in parentheses are discussed in Sec-
tion 4.4.

We found that DistMult worked well on the
symmetric relation derivationally related form,
where its symmetry assumption clearly helps.
Here 93% of the training data consists of symmet-
ric pairs (i.e., (i, k, j) and (j, k, i)), and 88% of
the test triples have its symmetric counterpart in
the training set. In contrast, TransE contained no
test triples for derivationally related form in the
top-100 list. We found that the norm of the em-
bedding vector of this relation was 0.1, which was
considerably smaller than for the other relations
(avg. 1.4). This supports our argument that TransE
tends to push symmetric relation embeddings to 0.

Note that while hyponymy, hypernymy, member
meronym and member holonym are semantically
transitive, the dataset contains almost exclusively
their transitive core, i.e., the dataset (both train and
test) does not contain many of the transitive links
of the relations. As a result, models that cannot
handle transitivity well may still produce good re-
sults. This might explain why TransE performed
better for these relations than for derivationally
related form. DistMult did not perform well on
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Model
Relation DistMult TransE ComplEx Analogy RESCAL RuleN
hyponymy 1 ( 1) 18 ( 32) 99 ( 99) 99 ( 99) 92 ( 93) 100 ( 100)
hypernymy 0 ( 0) 5 ( 33) 99 ( 99) 99 ( 99) 96 ( 98) 100 ( 100)
derivationally related form 100 ( 100) 0 ( 0) 100 ( 100) 100 ( 100) 6 ( 68) 100 ( 100)
member meronym 0 ( 0) 18 ( 41) 74 ( 84) 83 ( 85) 44 ( 63) 100 ( 100)
member holonym 0 ( 0) 16 ( 47) 74 ( 83) 83 ( 85) 37 ( 54) 100 ( 100)

Table 4: Number of test triples in the top-100 filtered predictions on WN18. An estimate of the number of true
triples in the top-100 list is given in parentheses.

these relations (they are asymmetric). ComplEx
and Analogy showed superior performance across
all relations. RESCAL is in between, most likely
due to difficulties in finding a good parameteriza-
tion. However, it is unclear to us why TransE per-
formed well on FB15K and FB-237.

To investigate model performance in PR for dif-
ferent values of K, we give the curves of Hits@K
as a function of K for all datasets in Fig. 1. Com-
plEx and Analogy, which are universal models,
performed best for large K w.r.t. other embedding
models. Similarly, TransE works the best for small
values of K on FB15K and FB-237. Notice that
RuleN performs considerably better on FB15K,
WN18 and WNRR, while it still performs com-
petitively on FB-237.

4.4 Influence of Unobserved True Triples

Since all datasets are based on incomplete knowl-
edge bases, all evaluation protocols may system-
atically underestimate model performance. In par-
ticular, any true triple t that is neither in the train-
ing, nor validation, nor test data is treated as neg-
ative during ranking-based evaluations. A model
which correctly ranks t high is thus penalized. PR
might be particularly sensitive to this due to the
large number of candidates considered.

It is generally unclear how to design an auto-
matic evaluation strategy that avoids this problem.
Manual labeling can be used to address this, but it
may sometimes be infeasible given the large num-
ber of relations, entities, and models for KBC.

To explore such underestimation effect in PR,
we decoded the unobserved triples in the top-100
predictions of the 5 most frequent relations of
WN18. We then checked whether those triples are
implied by the symmetry and transitivity proper-
ties of each relation. In Table 4, we give the result-
ing number of triples in parentheses (i.e., number
of test triples + implied triples). We observed that
underestimation indeed happened. TransE was
mostly affected, but still did not lead to competi-

tive results when compared to ComplEx and Anal-
ogy. RuleN achieves the best possible results in all
5 relations. These results suggest that (1) underes-
timation is indeed a concern, and (2) the results in
PR can nevertheless give an indication of relative
model performance.

4.5 Type Filtering

When background knowledge (BK) is available,
embedding models only need to score triples con-
sistent with the BK. We explored whether their
performance can be improved by filtering out
type-inconsistent triples from each model’s pre-
dictions. Notice that this is inherently what rule-
based approaches do, since all predicted candi-
dates will be type-consistent. In particular, we
investigated how model performance is affected
when we filter out predictions that violate type
constraints (domain and range of each relation).
If a model’s performance improves with such type
filtering, it must have ranked tuples with incorrect
types high in the first place. We can thus assess to
what extent models capture entity types as well as
the domain and range of the relations.

We extracted from Freebase type definitions for
entities and domain and range constraints for re-
lations. We also added the domain (or range) of
a relation k to the type set of each subject (or
object) entity which appeared in k. We obtained
types for all entities in both FB datasets, and do-
main/range specifications for roughly 93% of re-
lations in FB15K and 97% of relations in FB-237.
The remaining relations were evaluated as before.

We report in Table 5 the Hits@100 and
MAP@100 as well as their absolute improvement
(in parentheses) w.r.t. Table 3. We also include
the results of RuleN from Table 3, which are al-
ready type-consistent. The results show that all
KGE models improve by type filtering; thus all
models do predict triples with incorrect types. In
particular, DistMult shows considerable improve-
ment on both datasets. Indeed, about 90% of the
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(a) FB15K

(b) WN18

(c) FB-237

(d) WN18RR

Figure 1: Hits@K with PR as a function of K

Data Model MAP@K (%) Hits@K (%)
FB15K DistMult 18.8 (+17.5) 36.4 (+26.0)

TransE 25.7 (+4.5) 41.7 (+5.4)
ComplEx 53.1 (+22.0) 69.6 (+21.0)
Analogy 41.3 (+22.5) 61.5 (+26.7)
RESCAL 16.7 (+1.7) 32.8 (+2.5)
RuleN 77.4 (0.0) 83.7 (0.0)

FB-237 DistMult 9.5 (+9.2) 18.1 (+13.9)
TransE 11.3 (+3.4) 21.2 (+3.6)
ComplEx 11.3 (+4.2) 21.8 (+5.2)
Analogy 10.5 (+5.6) 20.9 (+6.6)
RESCAL 10.2 (+3.5) 19.0 (+4.0)
RuleN 7.6 (0.0) 15.8 (0.0)

Table 5: Results with PR using type filtering (K = 100).

relations in FB15K (about 85% for FB-237) have
a different type for their domain and range. As
DistMult treats all relations as symmetric, it intro-
duces a wrong triple for each true triple into the
top-K list on these relations; type filtering allows
us to ignore these wrong tuples. This is also con-
sistent with DistMult’s improved performance un-
der ER, where type constraints are implicitly used
since only questions with correct types are con-
sidered. Interestingly, ComplEx and Analogy im-
proved considerably on FB15K, suggesting that
the best performing embedding models on this
dataset are still making a considerable number of
type-inconsistent predictions. On FB15K, the rel-
ative ranking of the models with type filtering is
roughly equal to the one without type filtering. On
the harder FB-237 dataset, all models now perform
similarly. Notice that when compared with RuleN,
embedding models are still behind on FB15K, but
are no longer behind on FB-237.

5 Conclusion

We investigated whether current embedding mod-
els provide good results for knowledge base com-
pletion, i.e., the task or inferring new facts from
an incomplete knowledge base. We argued that
the commonly-used ER evaluation protocol is not
suited to answer this question, and proposed the
PR evaluation protocol as an alternative. We eval-
uated a number of popular KGE models under the
ER and PR protocols and found that most KGE
models obtained good results under the ER but not
the PR protocol. Therefore, more research into
embedding models and their training is needed to
assess whether, when, and how KGE models can
be exploited for knowledge base completion.
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Abstract

We propose a novel application of self-
attention networks towards grammar induc-
tion. We present an attention-based supertag-
ger for a refined type-logical grammar, trained
on constructing types inductively. In addition
to achieving a high overall type accuracy, our
model is able to learn the syntax of the gram-
mar’s type system along with its denotational
semantics. This lifts the closed world assump-
tion commonly made by lexicalized grammar
supertaggers, greatly enhancing its generaliza-
tion potential. This is evidenced both by its
adequate accuracy over sparse word types and
its ability to correctly construct complex types
never seen during training, which, to the best
of our knowledge, was as of yet unaccom-
plished.

1 Introduction

Categorial Grammars, in their various incarna-
tions, posit a functional view on parsing: words
are assigned simple or complex categories (or:
types); their composition is modeled in terms of
functor-argument relationships. Complex cate-
gories wear their combinatorics on their sleeve,
which means that most of the phrasal structure is
internalized within the categories themselves; per-
forming the categorial assignment process for a se-
quence of words, i.e. supertagging, amounts to al-
most parsing (Bangalore and Joshi, 1999).

In machine learning literature, supertagging is
commonly viewed as a particular case of sequence
labeling (Graves, 2012). This perspective points to
the immediate applicability of established, high-
performing neural architectures; indeed, recur-
rent models have successfully been employed
(e.g. within the context of Combinatory Categorial
Grammars (CCG) (Steedman, 2000)), achieving
impressive results (Vaswani et al., 2016). How-
ever, this perspective comes at a cost; the su-

pertagger’s co-domain, i.e., the different cate-
gories it may assign, is considered fixed, as de-
fined by the set of unique categories in the train-
ing data. Additionally, some categories have dis-
proportionately low frequencies compared to the
more common ones, leading to severe sparsity is-
sues. Since under-represented categories are very
hard to learn, in practice models are evaluated and
compared based on their accuracy over categories
with occurrence counts above a certain threshold,
a small subset of the full category set.

This practical concession has two side-effects.
The first pertains to the supertagger’s inability to
capture rare syntactic phenomena. Although the
percentage of sentences that may not be correctly
analyzed due to the missing categories is usually
relatively small, it still places an upper bound on
the resulting parser’s strength which is hard to ig-
nore. The second, and perhaps more far reach-
ing, consequence is the implicit constraint it places
on the grammar itself. Essentially, the grammar
must be sufficiently coarse while also allocating
most of its probability mass on a small number of
unique categories. Grammars enjoying a higher
level of analytical sophistication are practically
unusable, since the associated supertagger would
require prohibitive amounts of data to overcome
their inherent sparsity.

We take a different view on the problem, in-
stead treating it as sequence transduction. We
propose a novel supertagger based on the Trans-
former architecture (Vaswani et al., 2017) that is
capable of constructing categories inductively, by-
passing the aforementioned limitations. We test
our model on a highly-refined, automatically ex-
tracted type-logical grammar for written Dutch,
where it achieves competitive results for high fre-
quency categories, while acquiring the ability to
treat rare and even unseen categories adequately.
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2 Type-Logical Grammars

The type-logical strand of categorial grammar
adopts a proof-theoretic perspective on natural
language syntax and semantics: checking whether
a phrase is syntactically well-formed amounts to a
process of logical deduction deriving its type from
the types of its constituent parts (Moot and Re-
toré, 2012). What counts as a valid deduction de-
pends on the type logic used. The type logic we
aim for is a variation on the simply typed frag-
ment of Multiplicative Intuitionistic Linear Logic
(MILL), where the type-forming operation of in-
terest is linear implication (for a brief but instruc-
tive introduction, refer to Wadler (1993)). Types
are inductively defined by the following grammar:

T ::= A | T1
d−→ T2 (1)

where T, T1, T2 are types, A is an atomic type and
d−→ an implication arrow, further subcategorized

by the label d.
Atomic types are assigned to phrases that are

considered ‘complete’, e.g. NP for noun phrase,
PRON for pronoun, etc. Complex types, on the
other hand, are the type signatures of binary func-
tors that compose with a single word or phrase to
produce a larger phrase; for instance NP

su−→ S cor-
responds to a functor that consumes a noun phrase
playing the subject role to create a sentence — an
intransitive verb.

The logic provides judgements of the form Γ `
B, stating that from a multiset of assumptions
Γ = A1, . . . An one can derive conclusion B. In
addition to the axiomA ` A, there are two rules of
inference; implication elimination (2) and impli-
cation introduction (3)1. Intuitively, the first says
that if one has a judgement of the form Γ ` A →
B and a judgement of the form ∆ ` A, one can
deduce that assumptions Γ and ∆ together derive
a proposition B. Similarly, the second says that
if one can derive B from assumptions A and Γ
together, then from Γ alone one can derive an im-
plication A→ B.

Γ ` A→ B ∆ ` A
Γ,∆ ` B → E (2)

A,Γ ` B
Γ ` A→ B

→ I (3)

1For labeled implications d−→, we make sure that compo-
sition is with respect to the d dependency relation.

The view of language as a linear type system
offers many meaningful insights. In addition to
the mentioned correspondence between parse and
proof, the Curry-Howard ‘proofs-as-programs’ in-
terpretation guarantees a direct translation from
proofs to computations. The two rules necessary
for proof construction have their computational
analogues in function application and abstraction
respectively, a link that paves the way to seam-
lessly move from a syntactic derivation to a pro-
gram that computes the associated meaning in a
compositional manner.

3 Constructive Supertagging

Categorial grammars assign denotational seman-
tics to types, which are in turn defined via a set
of inductive rules, as in (1). These, in effect, are
the productions a simple, context-free grammar; a
grammar of types underlying the grammar of sen-
tences. In this light, any type may be viewed as
a word of this simple type grammar’s language; a
regularity which we can try to exploit.

Considering neural networks’ established abil-
ity of implicitly learning context-free gram-
mars (Gers and Schmidhuber, 2001), it is reason-
able to expect that, given enough representational
capacity and a robust training process, a network
should be able to learn a context-free grammar
embedded within a wider sequence labeling task.
Jointly acquiring the two amounts to learning a)
how to produce types, including novel ones, and b)
which types to produce under different contexts,
essentially providing all of the necessary build-
ing blocks for a supertagger with unrestricted co-
domain. To that end, we may represent a single
type as a sequence of characters over a fixed vo-
cabulary, defined as the union of atomic types and
type forming operators (in the case of type-logical
grammars, the latter being n-ary logical connec-
tives). A sequence of types is then simply the con-
catenation of their corresponding representations,
where type boundaries can be marked by a special
separation symbol.

The problem then boils down to learning how
to transduce a sequence of words onto a sequence
of unfolded types. This can be pictured as a case
of sequence-to-sequence translation, operating on
word level input and producing character level
output, with the source language now being the
natural language and the target language being the
language defined by the syntax and semantics of
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our categorial grammar.

4 Related Work

Supertagging has been standard practice for lex-
icalized grammars with complex lexical entries
since the work of Bangalore and Joshi (1999). In
its original formulation, the categorial assignment
process is enacted by an N-gram Markov model.
Later work utilized Maximum Entropy models
that account for word windows of fixed length,
while incorporating expanded lexical features and
POS tags as inputs (Clark and Curran, 2004). Dur-
ing the last half of the decade, the advent of word
embeddings caused a natural shift towards neural
architectures, with recurrent neural networks be-
ing established as the prime components of recent
supertagging models. Xu et al. (2015) first used
simple RNNs for CCG supertagging, which were
gradually succeeded by LSTMs (Vaswani et al.,
2016; Lewis et al., 2016), also in the context of
Tree-Adjoining Grammars (Kasai et al., 2017).

Regardless of the particular implementation, the
above works all fall in the same category of se-
quence labeling architectures. As such, the type
vocabulary (i.e. the set of candidate categories)
is always considered fixed and pre-specified — it
is, in fact, hard coded within the architecture itself
(e.g. in the network’s final classification layer).
The inability of such systems to account for un-
seen types or even consistently predict rare ones
has permeated through the training and evaluation
process; a frequency cut-off is usually applied on
the corpus, keeping only categories that appear at
least 10 times throughout the training set (Clark
and Curran, 2004). This limitation has been ac-
knowledged in the past; in the case of CCG, cer-
tain classes of syntactic constructions pose sig-
nificant difficulties for parsing due to categories
completely missing from the corpus (Clark et al.,
2004). An attempt to address the issue was made
in the form of an inference algorithm, which it-
eratively expands upon the lexicon with new cat-
egories for unseen words (Thomforde and Steed-
man, 2011) — its applicability, however, is nar-
row, as new categories can often be necessary even
for words that have been previously encountered.

We differentiate from relevant work in not em-
ploying a type lexicon at all, fixed or adaptive.
Rather than providing our system with a vocab-
ulary of types, we seek to instead encode the type
construction process directly within the network.

Type prediction is no longer a discernible part of
the architecture, but rather manifested via the net-
work’s weights as a dynamic generation process,
much like a language model for types that is con-
ditioned on the input sentence.

5 Data

5.1 Corpus

The experiments reported on focus on Dutch, a
language with relatively free word order that al-
lows us to highlight the benefits of our non-
directional type logic. For our data needs,
we utilize the Lassy-Small corpus (van Noord
et al., 2006). Lassy-Small contains approximately
65000 annotated sentences of written Dutch, com-
prised of over 1 million words in total. The anno-
tations are DAGs with syntactic category labels at
the nodes, and dependency labels at the edges. The
possibility of re-entrancy obviates the need for ab-
stract syntactic elements (gaps, traces, etc.) in the
annotation of unbounded dependencies and related
phenomena.

5.2 Extracted Grammar

To obtain type assignments from the annotation
graphs, we design and apply an adaptation of
Moortgat and Moot’s (2002) extraction algorithm.
Following established practice, we assign phrasal
heads a functor (complex) type selecting for its
dependents. Atomic types are instantiated by a
translation table that maps part-of-speech tags and
phrasal categories onto their corresponding types.

As remarked above, we diverge from stan-
dard categorial practice by making no distinc-
tion between rightward and leftward implication
(slash and backslash, respectively), rather collaps-
ing both into the direction-agnostic linear impli-
cation. We compensate for the possible loss in
word-order sensitivity by subcategorizing the im-
plication arrow into a set of distinct linear func-
tions, the names of which are instantiated by the
inventory of dependency labels present in the cor-
pus. This decoration amounts to including the la-
beled dependency materialized by each head (in
the context of a particular phrase) within its corre-
sponding type, vastly increasing its informational
content. In practical terms, dependency labeling
is no longer treated as a task to be solved by the
downstream parser; it is now internal to the gram-
mar’s type system. To consistently binarize all of
our functor types, we impose an obliqueness or-
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geven ` NP
obj−−→ PRON

su−−→ Smain

L enkele ` NP
det−−→ NP

L

voorbeelden ` NP
L

enkele, voorbeelden ` NP
→ E

geven, enkele, voorbeelden ` PRON
su−−→ Smain

→ E
we ` PRON

L

we(we), geven(give), enkele(some), voorbeelden(examples) ` Smain
→ E

(a) Derivation for “we geven enkele voorbeelden” (we give some examples), showcasing a simple transitive verb derivation.

welke ` N
det−−→ (N

obj−−→ SV1)
body−−→ WHQ

L

rol ` N
L

welke, rol ` (N
obj−−→ SV1)

body−−→ WHQ

→ E

spelen ` N
obj−−→ NP

su−−→ SV1
L

N ` N
id

spelen, N ` NP
su−−→ SV1

→ E
typen ` NP

L

spelen, typen, N ` SV1
→ E

spelen, typen ` N
obj−−→ SV1

→ I

welke(which), rol(role), spelen(play), typen(types) ` WHQ
→ E

(b) Derivation for “welke rol spelen typen” (which role do types play), showcasing object-relativisation via second-order types.
Type SV1 stands for verb-initial sentence clause.

een ` N
det−−→ NP

L

en ` ADJ∗
cnj−−→ N

mod−−→ N

L

eenvoudig ` ADJ
L

degelijk ` ADJ
L

eenvoudig, en, degelijk ` N
mod−−→ N idee ` N

L

eenvoudig, en, degelijk, idee ` N
→ E

een (a), eenvoudig (simple), en (and), degelijk (solid), idee (idea) ` NP
→ E

(c) Derivation for “een eenvoudig en degelijk idee” (a simple and solid idea), showcasing non-polymorphic conjunction of two
adjectives forming a noun-phrase modifier.

Figure 1: Syntactic derivations of example phrases using our extracted grammar. Lexical type assignments are
the proofs’ axiom leaves marked L. Identity for non-lexically grounded axioms is marked id. Parentheses are
right implicit. Phrasal heads are associated with complex (functor) types. Phrases are composed via function
application of functors to their arguments (i.e. implication elimination: → E). Hypothetical reasoning for gaps is
accomplished via function abstraction of higher-order types (i.e. implication introduction: → I).

dering (Dowty, 1982) over dependency roles, cap-
turing the degree of coherence between a depen-
dent and the head. Figure 1 presents a few exam-
ple derivations, indicating how our grammar treats
a selection of interesting linguistic phenomena.

The algorithm’s yield is a type-logical treebank,
associating a type sequence to each sentence. The
treebank counts approximately 5700 unique types,
made out of 22 binary connectives (one for each
dependency label) and 30 atomic types (one for
each part-of-speech tag or phrasal category). As
Figure 2 suggests, the comprehensiveness of such
a fine-grained grammar comes at the cost of a
sparser lexicon. Under this regime, recognizing
rare types as first-class citizens becomes impera-
tive.

Finally, given that all our connectives are of a
fixed arity, we may represent types unambiguously
using polish notation (Hamblin, 1962). Polish no-
tation eliminates the need for brackets, reducing
the representation’s length and succinctly encod-
ing a type’s arity in an up-front manner.

100 101 102 103 104 105

Threshold Type Frequency (log)

0

20

40

60

80

100

%

Types Covered
Sentences Covered

Figure 2: Percentage of types and sentences covered as
a function of type frequency. The vast majority of types
(80%) are rare (have less than 10 occurrences). At least
one such type is present in a non-negligible part of the
corpus (12% of the overall sentences). A significant
portion of types (45%) appears just once throughout the
corpus.
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6 Model

Even though prior work suggests that both the su-
pertagging and the CFG-generation problems are
learnable (at least to an extent) in isolation, the
composition of the two is less straightforward.
Predicting the next atomic symbol requires for the
network to be able to model local, close-range
dependencies as ordained by the type-level syn-
tax. At the same time, it needs a global recep-
tive field in order to correctly infer full types from
distant contexts, in accordance with the sentence-
level syntax.

Given these two requirements, we choose to
employ a variant of the Transformer for the task
at hand (Vaswani et al., 2017). Transformers
were originally proposed for machine translation;
treating syntactic analysis as a translation task is
not, however, a new idea (Vinyals et al., 2015).
Transformers do away with recurrent architec-
tures, relying only on self-attention instead, and
their proven performance testifies to their strength.
Self-attention grants networks the ability to selec-
tively shift their focus over their own representa-
tions of non-contiguous elements within long se-
quences, based on the current context, exactly fit-
ting the specifications of our problem formulation.

Empirical evidence points to added benefits
from utilizing language models at either side of
an encoder-decoder architecture (Ramachandran
et al., 2017). Adhering to this, we employ a
pretrained Dutch ELMo (Peters et al., 2018; Che
et al., 2018) as large part of our encoder.

6.1 Network

Our network follows the standard encoder-decoder
paradigm. A high-level overview of the architec-
ture may be seen in Figure 3. The network accepts
a sequence of words as input, and as output pro-
duces a (longer) sequence of tokens, where each
token can be an atomic type, a logical connective
or an auxiliary separation symbol that marks type
boundaries. An example input/output pair may be
seen in Figure 4.

Our encoder consists of a frozen ELMo fol-
lowed by a single Transformer encoder layer. The
employed ELMo was trained as a language model
and constructs contextualized, 1024-dimensional
word vectors, shown to significantly benefit down-
stream parsing tasks. To account for domain adap-
tation without unfreezing the over-parameterized
ELMo, we allow for a transformer encoder layer

of 3 attention heads to process ELMo’s output2.

Our decoder is a 2-layer Transformer decoder.
Since the decoder processes information at a dif-
ferent granularity scale compared to the encoder,
we break the usual symmetry by setting its num-
ber of attention heads to 8.

At timestep t, the network is tasked with model-
ing the probability distribution of the next atomic
symbol at, conditional on all previous predic-
tions a0, . . . , at−1 and the whole input sentence
w0, . . . , wτ , and parameterized by its trainable
weights θ:

pθ(at|a0, . . . , at−1, w0, . . . , wτ )

We make a few crucial alterations to the original
Transformer formulation.

First, for the separable token transformations
we use a two-layer, dimensionality preserving,
feed-forward network. We replace the recti-
fier activation of the intermediate layer with
the empirically superior Gaussian Error Linear
Unit (Hendrycks and Gimpel, 2016).

Secondly, since there are no pretrained embed-
dings for the output tokens, we jointly train the
Transformer alongside an atomic symbol embed-
ding layer. To make maximal use of the extra pa-
rameters, we use the transpose of the embedding
matrix to convert the decoder’s high-dimensional
output back into token class weights. We obtain
the final output probability distributions by ap-
plying sigsoftmax (Kanai et al., 2018) on these
weights.

6.2 Training

We train our network using the adaptive training
scheme proposed by Vaswani et al (2017). We ap-
ply stricter regularization by increasing both the
dropout rate and the redistributed probability mass
of the Kullback-Leibler divergence loss to 0.2.
The last part is of major importance, as it effec-
tively discourages the network from simply mem-
oizing common type patterns.

2Given that no gradient flow is allowed past the trans-
former encoder layer, in practice we compute the ELMo em-
beddings of our input sentences in advance, and feed those
onto the rest of the network.
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Input Sentence Output Sequence

ELMo

Encoder

Embedding

Decoder
Embedding
(transposed)

σα

Output Probabilities

M symbolsN words

Sentence Embedding
RN×1024

Symbol Embeddings
RM×1024

Encoder Keys
RN×1024

Encoder Values
RN×1024

Decoder Values
RM×1024

Class Weights

Figure 3: The model architecture, where σ and α denote the sigsoftmax and argmax functions respectively, grayed
out items indicate non-trainable components and the dotted line depicts the information flow during inference.

zijn (are)
NP

su−→ Smain

er (there)
Smain

mod−→ Smain

toepassingen (uses)
NP

voor (for)
NP

obj1−→ NP
mod−→ NP

lineaire (linear)
NP

mod−→ NP

logica (logic)
NP

su−→, NP, Smain, #,
mod−→, Smain, Smain, #

obj1−→, NP,
mod−→, NP, NP, # mod−→, NP, NP, #, NP, #

Figure 4: Input-output example pair for the sentence “zijn er toepassingen voor lineaire logica?” (are there applica-
tions for linear logic?). The first two lines present the input sentence and the types that need to be assigned to each
word. The third line presents the desired output sequence, with types decomposed to atomic symbol sequences
under polish notation, and # used as a type separator.

7 Experiments and Results

In all described experiments, we run the model3

on the subset of sample sentences that are at most
20 words long. We use a train/val/test split of
80/10/104. We train with a batch size of 128, and
pad sentences to the maximum in-batch length.
Training to convergence takes, on average, eight
hours & 300 epochs for our training set of 45000
sentences on a GTX1080Ti. We report averages
over 5 runs.

Accuracy is reported on the type-level; that is,
during evaluation, we predict atomic symbol se-
quences, then collapse subtype sequences into full
types and compare the result against the ground
truth. Notably, a single mistake within a type is
counted as a completely wrong type.

3The code for the model and pro-
cessing scripts can be found at https:
//github.com/konstantinosKokos/
Lassy-TLG-Supertagging.

4It is worth pointing out that the training set contains
only ∼85% of the overall unique types, the remainder being
present only in the validation and/or test sets.

7.1 Main Results

We are interested in exploring the architecture’s
potential at supertagging, as traditionally formu-
lated, as well as its capacity to learn the grammar
beyond the scope of the types seen in the training
data. We would like to know whether the latter is
at all possible (and, if so, to what degree), but also
whether switching to a constructive setting has an
impact on overall accuracy.

Digram Encoding Predicting type sequences
one atomic symbol or connective at a time pro-
vides the vocabulary to construct new types,
but results in elongated target output sequence
lengths5. As a countermeasure, we experiment
with digram encoding, creating new atomic sym-
bols by iteratively applying pairwise merges of the
most frequent intra-type symbol digrams (Gage,
1994), a practice already shown to improve gen-
eralization for translation tasks (Sennrich et al.,
2016). To evaluate performance, we revert the
merges back into their atoms after obtaining the

5Note that if lexical categories are, on average, made out
of c atomic symbols, the overall output length is a constant
factor of the sentence length, i.e. there is no change of com-
plexity class with respect to a traditional supertagger.
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predictions.
With no merges, the model has to construct

types and type sequences using only atomic types
and connectives. As more merges are applied, the
model gains access to extra short-hands for sub-
sequences within longer types, reducing the tar-
get output length, and thus the number of inter-
actions it has to capture. This, however, comes
at the cost of a reduced number of full-type con-
structions effectively seen during training, while
also increasing the number of implicit rules of the
type-forming context-free grammar. If merging is
performed to exhaustion, all types are compressed
into single symbols corresponding to the indivis-
ible lexical types present in the treebank. The
model then reduces to a traditional supertagger,
never having been exposed to the internal type
syntax, and loses the potential to generate new
types.

We experiment with a fully constructive model
employing no merges (M0), a fully merged one
i.e. a traditional supertagger, (M∞), and three
in-between models trained with 50, 100 and 200
merges (M50, M100 and M200 respectively). Ta-
ble 1 displays the models’ accuracy. In addition to
the overall accuracy, we show accuracy over dif-
ferent bins of type frequencies, as measured in the
training data: unseen, rare (1-10), medium (10-
100) and high-frequency (> 100) types.

Type Accuracy

Overall Unseen Freq Freq Freq

Model Types 1-10 10-100 >100

M0 88.05 19.2 45.68 65.62 89.93

M50 88.03 15.97 43.69 64.33 90.01
M100 87.87 15.02 41.61 63.71 89.9
M200 87.54 11.7 39.56 62.4 89.64

M∞ 87.2 - 23.91 59.03 89.89

Table 1: Model performance at different merge scales,
with respect to training set type frequencies. Mi de-
notes the model at imerges, where M∞ means the fully
merged model. For the fully merged model there is a
1 to 1 correspondence between input words and output
types, so we do away with the separation symbol.

Table 1 shows that all constructive models per-
form overall better than M∞, owing to a consis-
tent increase in their accuracy over unseen, rare,
and mid-frequency types. This suggests signifi-
cant benefits to using a representation that is aware

Model New Types Unique Correct (%)

Generated

M0 213.6 199.2 44.39 (20.88)

M50 186.6 174.2 37.89 (20.3)

M100 187.8 173.4 34.31 (18.27)

M200 190.4 178.8 27.46 (14.42)

Table 2: Repetition-averaged unseen type generation
and precision.

of the type syntax. Additionally, the gains are
greater the more transparent the view of the type
syntax is, i.e. the fewer the merges. The merge-
free model M0 outperforms all other constructive
models across all but the most frequent type bins,
reaching an overall accuracy of 88.05% and an un-
seen category accuracy of 19.2%.

We are also interested in quantifying the mod-
els’ “imaginative” precision, i.e., how often do
they generate new types to analyze a given input
sentence, and, when they do, how often are they
right (Table 2). Although all constructive mod-
els are eager to produce types never seen during
training, they do so to a reasonable extent. Simi-
lar to their accuracy, an upwards trend is also seen
in their precision, with M0 getting the largest per-
centage of generated types correct.

Together, our results indicate that the type-
syntax is not only learnable, but also a represen-
tational resource that can be utilized to tangibly
improve a supertagger’s generalization and over-
all performance.

7.2 Other Models

Our preliminary experiments involved RNN-based
encoder-decoder architectures. We first tried train-
ing a single-layer BiGRU encoder over the ELMo
representations, connected to a single-layer GRU
decoder, following Cho et al. (2014); the model
took significantly longer to train and yielded far
poorer results (less than 80% overall accuracy and
a strong tendency towards memoizing common
types). We hypothesize that the encoder’s fixed
length representation is unable to efficiently cap-
ture all of the information required for decoding a
full sequence of atomic symbols, inhibiting learn-
ing.

As an alternative, we tried a separable LSTM
decoder operating individually on the encoder’s
representations of each word. Even though
this model was faster to train and performed
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marginally better compared to the previous at-
tempt, it still showed no capacity for generaliza-
tion over rarer types. This is unsurprising, as this
approach assumes that the decoding task can be
decomposed at the type-level; crucially, the sepa-
rable decoder’s prediction over a word cannot be
informed by its predictions spanning other words,
an information flow that evidently facilitates learn-
ing and generalization.

8 Analysis

8.1 Type Syntax

To assess the models’ acquired grasp of the type
syntax, we inspect type predictions in isolation.
Across all merge scales and consistently over all
trained models, all produced types (including un-
seen ones) are well-formed, i.e. they are indeed
words of the type-forming grammar. Further, the
types constructed are fully complying with our im-
plicit notational conventions such as the oblique-
ness hierarchy.

Even more interestingly, for models trained on
non-zero merges it is often the case that a type is
put together using the correct atomic elements that
together constitute a merged symbol, rather than
the merged shorthand trained on. Judging from
the above, it is apparent that the model gains a
functionally complete understanding of the type-
forming grammar’s syntax, i.e. the means through
which atomic symbols interact to produce types.

8.2 Sentence Syntax

Beyond the spectrum of single types, we examine
type assignments in context.

We first note a remarkable ability to correctly
analyze syntactically complex constructions re-
quiring higher-order reasoning, even in the pres-
ence of unseen types. An example of such an anal-
ysis is shown in Fig 5.

For erroneous analyses, we observe a strong
tendency towards self-consistency. In cases where
a type construction is wrong, types that interact
with that type (as either arguments or functors)
tend to also follow along with the mistake. On
one hand, this cascading behavior has the effect
of increasing error rates as soon as a single er-
ror has been made. On the other hand, how-
ever, this is a sign of an implicitly acquired no-
tion of phrase-wide well-typedness, and exempli-
fies the learned long-range interdependencies be-
tween types through the decoder’s auto-regressive

formulation. On a related note, we recognize the
most frequent error type as misconstruction of
conjunction schemes. This was, to a degree, ex-
pected, as coordinators display an extreme level
of lexical ambiguity, owing to our extracted gram-
mar’s massive type vocabulary.

8.3 Output Embeddings

Our network trains not only the encoder-decoder
stacks, but also an embedding layer of atomic
symbols. We can extract this layer’s outputs
to generate vectorial representations of atomic
types and binary connectives, which essentially
are high-dimensional character-level embeddings
of the type language.

Considering that dense supertag representations
have been shown to benefit parsing (Kasai et al.,
2017), our atomic symbol embeddings may be fur-
ther utilized by downstream tasks, as a highly re-
fined source of type-level information.

8.4 Comparison

Our model’s overall accuracy lies at 88%, which
is comparable to the state-of-the-art in TAG su-
pertagging (Kasai et al., 2017) but substantially
lower than CCG (Clark et al., 2018). A direct nu-
meric comparison holds little value, however, due
to the different corpus, language and formalism
used. To begin with, our scores are the result of
a more difficult problem, since our target gram-
mar is far more refined. Concretely, we measure
accuracy over a set of 5700 types, which is one
order of magnitude larger than the CCGBank test
bed (425 in most published work; CCGBank itself
contains a little over 1100 types) and 20% larger
than the set of TAGs in the Penn Treebank. Practi-
cally, a portion of the error mass is allotted to mis-
labeling the implication arrow’s name, which is
in one-to-one correspondence with a dependency
label of the associated parse tree. In that sense,
our error rate is already accounting for a portion
of the labeled attachment score, a task usually de-
ferred to a parser further down the processing line.
Further, the prevalence of entangled dependency
structures in Dutch renders its syntax considerably
more complicated than English.

9 Conclusion and Future Work

Our paper makes three novel contributions to cat-
egorial grammar parsing. We have shown that
attention-based frameworks, such as the Trans-
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in (to)
ADV

obj1−→ ((INF
mod−→ INF)→ SV1) body−→ WHQ

hoeverre (what-degree)
ADV

zal (will)
INF

vc−→ NP
su−→ SV1

het (the)
N

det−→ NP

rapport (report)
N

dan (then)
INF

mod−→ INF

nog (still)
INF

mod−→ INF

een (a)
N

det−→ NP

rol (role)
N

spelen (play)
NP

obj1−→ INF

Figure 5: Type assignments for the correctly analyzed wh-question “in hoeverre zal het rapport dan nog een rol
spelen” (to what extent will the report still play a role) involving a particular instance of pied-piping. The type of
“in” was never seen during training; it consumes an adverb as its prepositional object, to then provide a third-order
type that turns a verb-initial clause with a missing infinitive modifier into a wh-question. Such constructions are a
common source of errors for supertaggers, as different instantiations require unique category assignments.

former, may act as capable and efficient supertag-
gers, eliminating the computational costs of re-
currence. We have proposed a linear type sys-
tem that internalizes dependency labels, expand-
ing upon categorial grammar supertags and eas-
ing the burden of downstream parsing. Finally,
we have demonstrated that a subtle reformulation
of the supertagging task can lift the closed world
assumption, allowing for unbounded supertagging
and stronger grammar learning while incurring
only a minimal cost in computational complexity.

Hyper-parameter tuning and network optimiza-
tion were not the priority of this work; it is en-
tirely possible that different architectures or train-
ing algorithms might yield better results under the
same, constructive paradigm. This aside, our work
raises three questions that we are curious to see
answered. First and foremost, we are interested
to examine how our approach performs under dif-
ferent datasets, be it different grammar specifica-
tions, formalisms or languages, as well as its po-
tential under settings of lesser supervision. A nat-
ural continuation is also to consider how our su-
pertags and their variable-length, content-rich vec-
torial representations may best be integrated with
a neural parser architecture. Finally, given the
close affinity between syntactic derivations, log-
ical proofs and programs for meaning computa-
tion, we plan to investigate how insights on se-
mantic compositionality may be gained from the
vectorial representations of types and type-logical
derivations.
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Abstract

We present a deep generative model of bilin-
gual sentence pairs for machine translation.
The model generates source and target sen-
tences jointly from a shared latent representa-
tion and is parameterised by neural networks.
We perform efficient training using amortised
variational inference and reparameterised gra-
dients. Additionally, we discuss the statistical
implications of joint modelling and propose
an efficient approximation to maximum a pos-
teriori decoding for fast test-time predictions.
We demonstrate the effectiveness of our model
in three machine translation scenarios: in-
domain training, mixed-domain training, and
learning from a mix of gold-standard and syn-
thetic data. Our experiments show consistently
that our joint formulation outperforms condi-
tional modelling (i.e. standard neural machine
translation) in all such scenarios.

1 Introduction

Neural machine translation (NMT) systems
(Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Cho et al., 2014b) require vast
amounts of labelled data, i.e. bilingual sentence
pairs, to be trained effectively. Oftentimes, the
data we use to train these systems are a byproduct
of mixing different sources of data. For example,
labelled data are sometimes obtained by putting
together corpora from different domains (Sen-
nrich et al., 2017). Even for a single domain,
parallel data often result from the combination
of documents independently translated from dif-
ferent languages by different people or agencies,
possibly following different guidelines. When
resources are scarce, it is not uncommon to
mix in some synthetic data, e.g. bilingual data
artificially obtained by having a model translate
target monolingual data to the source language
(Sennrich et al., 2016a). Translation direction,

original language, and quality of translation are
some of the many factors that we typically choose
not to control for (due to lack of information or
simply for convenience).1 All those arguably
contribute to making our labelled data a mixture
of samples from various data distributions.

Regular NMT systems do not explicitly account
for latent factors of variation, instead, given a
source sentence, NMT models a single conditional
distribution over target sentences as a fully super-
vised problem. In this work, we introduce a deep
generative model that generates source and target
sentences jointly from a shared latent representa-
tion. The model has the potential to use the la-
tent representation to capture global aspects of the
observations, such as some of the latent factors
of variation just discussed. The result is a model
that accommodates members of a more complex
class of marginal distributions. Due to the pres-
ence of latent variables, this model requires poste-
rior inference, in particular, we employ the frame-
work of amortised variational inference (Kingma
and Welling, 2014). Additionally, we propose an
efficient approximation to maximum a posteriori
(MAP) decoding for fast test-time predictions.

Contributions We introduce a deep generative
model for NMT (§3) and discuss theoretical ad-
vantages of joint modelling over conditional mod-
elling (§3.1). We also derive an efficient approx-
imation to MAP decoding that requires only a
single forward pass through the network for pre-
diction (§3.3). Finally, we show in §4 that our
proposed model improves translation performance
in at least three practical scenarios: i) in-domain

1Also note that this list is by no means exhaustive. For
example, Rabinovich et al. (2017) show influence of factors
such as personal traits and demographics in translation. An-
other clear case is presented by Johnson et al. (2017), who
combine parallel resources for multiple languages to train a
single encoder-decoder architecture.
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training on little data, where test data are expected
to follow the training data distribution closely; ii)
mixed-domain training, where we train a single
model but test independently on each domain; and
iii) learning from large noisy synthetic data.

2 Neural Machine Translation

In machine translation our observations are
pairs of random sequences, a source sentence
x = 〈x1, . . . , xm〉 and a target sentence y =
〈y1, . . . , yn〉, whose lengthsm and nwe denote by
|x| and |y|, respectively. In NMT, the likelihood of
the target given the source

P (y|x, θ) =

|y|∏

j=1

Cat(yj |fθ(x, y<j)) (1)

factorises without Markov assumptions (Sutskever
et al., 2014; Bahdanau et al., 2015; Cho et al.,
2014a). We have a fixed parameterised function
fθ, i.e. a neural network architecture, compute cat-
egorical parameters for varying inputs, namely, the
source sentence and target prefix (denoted y<j).

Given a dataset D of i.i.d. observations, the
parameters θ of the model are point-estimated
to attain a local maximum of the log-likelihood
function, L(θ|D) =

∑
(x,y)∈D logP (y|x, θ), via

stochastic gradient-based optimisation (Robbins
and Monro, 1951; Bottou and Cun, 2004).

Predictions For a trained model, predictions are
performed by searching for the target sentence y
that maximises the conditional P (y|x), or equiva-
lently its logarithm, with a greedy algorithm

arg max
y

P (y|x, θ) ≈ greedy
y

logP (y|x, θ) (2)

such as beam-search (Sutskever et al., 2014), pos-
sibly aided by a manually tuned length penalty.
This decision rule is often referred to as MAP de-
coding (Smith, 2011).

3 Auto-Encoding Variational NMT

To account for a latent space where global fea-
tures of observations can be captured, we intro-
duce a random sentence embedding z ∈ Rd and
model the joint distribution over observations as a
marginal of p(z, x, y|θ).2 That is, (x, y) ∈ D is
assumed to be sampled from the distribution

P (x, y|θ) =

∫
p(z)P (x, y|z, θ)dz . (3)

2We use uppercase P (·) for probability mass functions
and lowercase p(·) for probability density functions.

where we impose a standard Gaussian prior on the
latent variable, i.e. Z ∼ N (0, I), and assume
X ⊥ Y |Z. That is, given a sentence embedding z,
we first generate the source conditioned on z,

P (x|z, θ) =

|x|∏

i=1

Cat(xi|gθ(z, x<i)) , (4)

then generate the target conditioned on x and z,

P (y|x, z, θ) =

|y|∏

j=1

Cat(yj |fθ(z, x, y<j)) . (5)

Note that the source sentence is generated with-
out Markov assumptions by drawing one word
at a time from a categorical distribution parame-
terised by a recurrent neural network gθ. The tar-
get sentence is generated similarly by drawing tar-
get words in context from a categorical distribu-
tion parameterised by a sequence-to-sequence ar-
chitecture fθ. This essentially combines a neural
language model (Mikolov et al., 2010) and a neu-
ral translation model (§2), each extended to condi-
tion on an additional stochastic input, namely, z.

3.1 Statistical considerations
Modelling the conditional directly, as in standard
NMT, corresponds to the statistical assumption
that the distribution over source sentences can pro-
vide no information about the distribution over
target sentences given a source. That is, condi-
tional NMT assumes independence of β determin-
ing P (y|x, β) and α determining P (x|α). Sce-
narios where this assumption is unlikely to hold
are common: where x is noisy (e.g. synthetic or
crowdsourced), poor quality x should be assigned
low probability P (x|α) which in turn should in-
form the conditional. Implications of this assump-
tion extend to parameter estimation: updates to the
conditional are not sensitive to how exotic x is.

Let us be more explicit about how we parame-
terise our model by identifying 3 sets of param-
eters θ = {θemb-x, θLM, θTM}, where θemb-x pa-
rameterises an embedding layer for the source lan-
guage. The embedding layer is shared between the
two model components

P (x, y|z, θ) =

P (x| z, θemb-x, θLM︸ ︷︷ ︸
α

)P (y|x, z, θemb-x, θTM︸ ︷︷ ︸
β

) (6)

and it is then clear by inspection that α ∩ β =
{z, θemb-x}. In words, we break the independence
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assumption in two ways, namely, by having the
two distributions share parameters and by having
them depend on a shared latent sentence represen-
tation z. Note that while the embedding layer is
deterministic and global to all sentence pairs in the
training data, the latent representation is stochastic
and local to each sentence pair.

Now let us turn to considerations about la-
tent variable modelling. Consider a model
P (x|θemb-x, θLM)P (y|x, θemb-x, θTM) of the joint
distribution over observations that does not em-
ploy latent variables. This alternative, which we
discuss further in experiments, models each com-
ponent directly, whereas our proposed model (3)
requires marginalisation of latent embeddings
z. Marginalisation turns our directed graphical
model into an undirected one inducing further
structure in the marginal. See Appendix B, and
Figure 2 in particular, for an extended discussion.

3.2 Parameter estimation
The marginal in Equation (3) is clearly intractable,
thus precluding maximum likelihood estimation.
Instead, we resort to variational inference (Jor-
dan et al., 1999; Blei et al., 2017) and introduce
a variational approximation q(z|x, y, λ) to the in-
tractable posterior p(z|x, y, θ). We let the approx-
imate posterior be a diagonal Gaussian

Z|λ, x, y ∼ N (u, diag(s� s))

u = µλ(x, y)

s = σλ(x, y)

(7)

and predict its parameters (i.e. u ∈ Rd, s ∈ Rd>0)
with neural networks whose parameters we denote
by λ. This makes the model an instance of a varia-
tional auto-encoder (Kingma and Welling, 2014).
See Figure 1 in Appendix B for a graphical depic-
tion of the generative and inference models.

We can then jointly estimate the parameters of
both models (generative θ and inference λ) by
maximising the ELBO (Jordan et al., 1999), a
lowerbound on the marginal log-likelihood,

logP (x, y|θ) ≥ E(θ, λ|x, y) =

Eε∼N (0,I) [logP (x, y|z = u + ε� s, θ)]

−KL(N (z|u, diag(s� s))||N (z|0, I)) ,

(8)

where we have expressed the expectation with re-
spect to a fixed distribution—a reparameterisation
available to location-scale families such as the
Gaussian (Kingma and Welling, 2014; Rezende

et al., 2014). Due to this reparameterisation, we
can compute a Monte Carlo estimate of the gradi-
ent of the first term via back-propagation (Rumel-
hart et al., 1986; Schulman et al., 2015). The
KL term, on the other hand, is available in closed
form (Kingma and Welling, 2014, Appendix B).

3.3 Predictions
In a latent variable model, MAP decoding (9a) re-
quires searching for y that maximises the marginal
P (y|x, θ) ∝ P (x, y|θ), or equivalently its loga-
rithm. In addition to approximating exact search
with a greedy algorithm, other approximations
are necessary in order to achieve fast predic-
tion. First, rather than searching through the true
marginal, we search through the evidence lower-
bound. Second, we replace the approximate pos-
terior q(z|x, y) by an auxiliary distribution r(z|x).
As we are searching through the space of tar-
get sentences, not conditioning on y circumvents
combinatorial explosion and allows us to drop
terms that depend on x alone (9b). Finally, in-
stead of approximating the expectation via MC
sampling, we condition on the expected latent rep-
resentation and search greedily (9c).

arg max
y

logP (y|x) (9a)

≈ arg max
y

Er(z|x)[logP (y|z, x)] (9b)

≈ greedy
y

logP (y|Er(z|x)[z], x) (9c)

Together, these approximations enable prediction
with a single call to an arg max solver, in our case
a standard greedy search algorithm, which leads to
prediction times that are very close to that of the
conditional model. This strategy, and (9b) in par-
ticular, suggests that a good auxiliary distribution
r(z|x) should approximate q(z|x, y) closely.

We parameterise this prediction model using a
neural network and investigate different options to
estimate its parameters. As a first option, we re-
strict the approximate posterior to conditioning on
x alone, i.e. we approach posterior inference with
qλ(z|x) rather than qλ(z|x, y), and thus, we can
use r(z|x) = qλ(z|x) for prediction.3 As a second
option, we make rφ(z|x) a diagonal Gaussian and
estimate parameters φ to make rφ(z|x) close to the
approximate posterior qλ(z|x, y) as measured by

3Note that this does not stand in contrast to our motivation
for joint modelling, as we still tie source and target through z
in the generative model, but it does limit the context available
for posterior inference.
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D(rφ, qλ). For as long as D(rφ, qλ) ∈ R≥0 for ev-
ery choice of φ and λ, we can estimate φ jointly
with θ and λ by maximising a modified ELBO

logP (x, y|θ) ≥ E(θ, λ|x, y)−D(rφ, qλ) (10)

which is loosened by the gap between rφ and qλ.
In experiments we investigate a few options for
D(rφ, qλ), all available in closed form for Gaus-
sians, such as KL(rφ||qλ), KL(qλ||rφ), as well as
the Jensen-Shannon (JS) divergence.

Note that rφ is used only for prediction as a de-
coding heuristic and as such need not be stochas-
tic. We can, for example, design rφ(x) to be a
point estimate of the posterior mean and optimise

E(θ, λ|x, y)−
∥∥rφ(x)− Eqλ(z|x,y)[z]

∥∥2
2

(11)

which remains a lowerbound on log-likelihood.

4 Experiments

We investigate two translation tasks, namely,
WMT’s translation of news (Bojar et al., 2016) and
IWSLT’s translation of transcripts of TED talks
(Cettolo et al., 2014), and concentrate on transla-
tions for German (DE) and English (EN) in either
direction. In this section we aim to investigate sce-
narios where we expect observations to be repre-
sentative of various data distributions. As a san-
ity check, we start where training conditions can
be considered in-domain with respect to test con-
ditions. Though note that this does not preclude
the potential for appreciable variability in observa-
tions as various other latent factors still likely play
a role (see §1). We then mix datasets from these
two remarkably different translation tasks and in-
vestigate whether performance can be improved
across tasks with a single model. Finally, we in-
vestigate the case where we learn from synthetic
data in addition to gold-standard data. For this in-
vestigation we derive synthetic data from observa-
tions that are close to the domain of the test set in
an attempt to avoid further confounders.

Data For bilingual data we use News Commen-
tary (NC) v12 (Bojar et al., 2017) and IWSLT
2014 (Cettolo et al., 2014), where we assume NC
to be representative of the test domain of the WMT
News task. The datasets consist of 255, 591 train-
ing sentences and 153, 326 training sentences re-
spectively. In experiments with synthetic data, we
subsample 106 sentences from the News Crawl
2016 articles (Bojar et al., 2017) for either German

or English depending on the target language. For
the WMT task, we concatenate newstest2014
and newstest2015 for validation/development
(5, 172 sentence pairs) and report test results on
newstest2016 (2, 999 sentence pairs). For
IWSLT, we use the split proposed by Ranzato et al.
(2016) who separated 6, 969 training instances for
validation/development and reported test results
on a concatenation of dev2010, dev2012 and
tst2010-2012 (6, 750 sentence pairs).

Pre-processing We tokenized and truecased all
data using standard scripts from the Moses
toolkit (Koehn et al., 2007), and removed sen-
tences longer than 50 tokens. For computational
efficiency and to avoid problems with closed vo-
cabularies, we segment the data using BPE (Sen-
nrich et al., 2016b) with 32, 000 merge operations
independently for each language. For training the
truecaser and the BPEs we used a concatenation
of all the available bilingual and monolingual data
for German and all bilingual data for English.

Systems We develop all of our models on top of
Tensorflow NMT (Luong et al., 2017). Our base-
line system is a standard implementation of condi-
tional NMT (COND) (Bahdanau et al., 2015). To
illustrate the importance of latent variable mod-
elling, we also include in the comparison a sim-
pler attempt at JOINT modelling where we do not
induce a shared latent space. Instead, the model is
trained in a fully-supervised manner to maximise
what is essentially a combination of two nearly in-
dependent objectives,

L(θ|D) =
∑

(x,y)∈D

|x|∑

i=1

logP (xi|x<i, θemb-x, θLM)

+

|y|∑

j=1

logP (yj |x, y<j , θemb-x, θTM) , (12)

namely, a language model and a conditional trans-
lation model. Note that the two components of the
model share very little, i.e. an embedding layer for
the source language. Finally, we aim at investigat-
ing the effectiveness of our auto-encoding varia-
tional NMT (AEVNMT).4 Appendix A contains
a detailed description of the architectures that pa-
rameterise our systems.5

4Code available from github.com/Roxot/AEVNMT.
5In comparison to COND, AEVNMT requires additional

components: a source language model, an inference network,
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NC IWSLT

Dropout 30% 30%
Word dropout rate 10% 20%
KL annealing steps 80, 000 80, 000

KL(q(z)||p(z)) on EN-DE 5.94 8.01

Table 1: Strategies to promote use of latent representa-
tion along with the validation KL achieved.

Hyperparameters Our recurrent cells are 256-
dimensional GRU units (Cho et al., 2014b). We
train on batches of 64 sentence pairs with Adam
(Kingma and Ba, 2015), learning rate 3 × 10−4,
for at least T updates. We then perform con-
vergence checks every 500 batches and stop af-
ter 20 checks without any improvement measured
by BLEU (Papineni et al., 2002). For in-domain
training we set T = 140, 000, and for mixed-
domain training, as well as training with synthetic
data, we set T = 280, 000. For decoding we use
a beam width of 10 and a length penalty of 1.0.
We investigate the use of dropout (Srivastava et al.,
2014) for the conditional baseline with rates from
10% to 60% in increments of 10%. Best valida-
tion performance on WMT required a rate of 40%
for EN-DE and 50% for DE-EN, while on IWSLT
it required 50% for either translation direction. To
spare resources, we also use these rates for train-
ing the simple JOINT model.

Avoiding collapsing to prior Many have no-
ticed that VAEs whose observation models are pa-
rameterised by strong generators, such as recur-
rent neural networks, learn to ignore the latent rep-
resentation (Bowman et al., 2016; Higgins et al.,
2017; Sønderby et al., 2016; Alemi et al., 2018). In
such cases, the approximate posterior “collapses”
to the prior, and where one has a fixed prior, such
as our standard Gaussian, this means that the pos-
terior becomes independent of the data, which is
obviously not desirable. Bowman et al. (2016)
proposed two techniques to counter this effect,
namely, “KL annealing”, and target word dropout.
KL annealing consists in incorporating the KL
term of Equation (8) into the objective gradually,
thus allowing the posterior to move away from the
prior more freely at early stages of training. After

and possibly a prediction network. However, this does not
add much sequential computation: the inference network can
run in parallel with the source encoder, and the source lan-
guage model runs in parallel with the target decoder.

Objective BLEU ↑
ELBOx,y−KL(rφ(z|x)||qλ(z|x, y)) 14.7
ELBOx,y−KL(qλ(z|x, y)||rφ(z|x)) 14.8
ELBOx,y− JS(rφ(z|x)||qλ(z|x, y)) 14.9

ELBOx,y−
∥∥rφ(x)− Eqλ(z|x,y)[Z]

∥∥2
2

14.8

ELBOx 14.9

Table 2: EN-DE validation results for NC training.
ELBOx means we condition on the source alone for
posterior inference, i.e. the variational approximation
qλ(z|x) is used for training and for predictions. In
all other cases, we condition on both observations for
training, i.e. qλ(z|x, y), and train either a distribution
rφ(z|x) or a point estimate rφ(x) for predictions.

a number of annealing steps, the KL term is in-
corporated in full and training continues with the
actual ELBO. In our search we considered anneal-
ing for 20, 000 to 80, 000 training steps. Word
dropout consists in randomly masking words in
observed target prefixes at a given rate. The idea
is to harm the potential of the decoder to capi-
talise on correlations internal to the structure of
the observation in the hope that it will rely more
on the latent representation instead. We consid-
ered rates from 20% to 40% in increments of 10%.
Table 1 shows the configurations that achieve best
validation results on EN-DE. To spare resources,
we reuse these hyperparameters for DE-EN ex-
periments. With these settings, we attain a non-
negligible validation KL (see, last row of Table 1),
which indicates that the approximate posterior is
different from the prior at the end of training.

ELBO variants We investigate the effect of
conditioning on target observations for posterior
inference during training against a simpler variant
that conditions on the source alone. Table 2 sug-
gests that conditioning on x is sufficient and thus
we opt to continue with this simpler version. Do
note that when we use both observations for poste-
rior inference, i.e. qλ(z|x, y), and thus train an ap-
proximation rφ for prediction, we have additional
parameters to estimate (e.g. due to the need to en-
code y for qλ and x for rφ), thus it may be the case
that for these variants to show their potential we
need larger data and/or prolonged training.

4.1 Results

In this section we report test results in terms of
BLEU (Papineni et al., 2002) and BEER (Stano-
jević and Sima’an, 2014), but in Appendix E
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EN-DE DE-EN

Task Model BLEU ↑ BEER ↑ BLEU ↑ BEER ↑
IWSLT14 COND 23.0 (0.1) 58.6 (0.1) 27.3 (0.2) 59.8 (0.1)

JOINT 23.2 58.7 27.5 59.8
AEVNMT 23.4 (0.1) 58.8 (0.1) 28.0 (0.1) 60.1 (0.1)

WMT16 COND 17.8 (0.2) 53.1 (0.1) 20.1 (0.1) 53.7 (0.1)
JOINT 17.9 53.4 20.1 53.7
AEVNMT 18.4 (0.2) 53.5 (0.1) 20.6 (0.2) 53.6 (0.1)

Table 3: Test results for in-domain training on IWSLT (top) and NC (bottom): we report average (1std) across 5
independent runs for COND and AEVNMT, but a single run of JOINT.

we additionally report METEOR (Denkowski and
Lavie, 2011) and TER (Snover et al., 2006). We
de-truecase and de-tokenize our system’s predic-
tions and compute BLEU scores using Sacre-
BLEU (Post, 2018).6 For BEER, METEOR and
TER, we tokenize the results and test sets using the
same tokenizer as used by SacreBLEU. We make
use of BEER 2.0, and for METEOR and TER use
MULTEVAL (Clark et al., 2011). In Appendix D
we report validation results, in this case in terms of
BLEU alone as that is what we used for model se-
lection. Finally, to give an indication of the degree
to which results are sensitive to initial conditions
(e.g. random initialisation of parameters), and to
avoid possibly misleading signifiance testing, we
report the average and standard deviation of 5 in-
dependently trained models. To spare resources
we do not report multiple runs for JOINT, but our
experience is that its performance varies similarly
to that of the conditional baseline.

We start with the case where we can reasonably
assume training data to be in-domain with respect
to test data. Table 3 shows in-domain training per-
formance. First, we remark that our conditional
baseline for the IWSLT14 task (IWSLT training)
is very close to an external baseline trained on the
same data (Bahdanau et al., 2017).7 The results
on IWSLT show benefits from joint modelling and
in particular from learning a shared latent space.
For the WMT16 task (NC training), BLEU shows
a similar trend, namely, joint modelling with a
shared latent space (AEVNMT) outperforms both
conditional modelling and the simple joint model.

6Version string: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.2.12

7Bahdanau et al. (2017) report 27.56 on the same test set
for DE-EN, though note that they train on words rather than
BPEs and use a different implementation of BLEU.

We now consider the scenario where we know
for a fact that observations come from two differ-
ent data distributions, which we realise by train-
ing our models on a concatenation of IWSLT and
NC. In this case, we perform model selection once
on the concatenation of both development sets and
evaluate the same model on each domain sepa-
rately. We can see in Table 4 that conditional mod-
elling is never preferred, JOINT performs reason-
ably well, especially for DE-EN, and that in every
comparison our AEVNMT outperforms the condi-
tional baseline both in terms of BLEU and BEER.

Another common scenario where two very dis-
tinct data distributions are mixed is when we capi-
talise on the abundance of monolingual data and
train on a concatenation of gold-standard bilin-
gual data (we use NC) and synthetic bilingual
data derived from target monolingual corpora via
back-translation (Sennrich et al., 2016a) (we use
News Crawl). In such a scenario the latent vari-
able might be able to inform the translation model
of the amount of noise present in the source sen-
tence. Table 5 shows results for both baselines and
AEVNMT. First, note that synthetic data greatly
improves the conditional baseline, in particular
translating into English. Once again AEVNMT
consistently outperforms conditional modelling
and joint modelling without latent variables.

By mixing different sources of data we are try-
ing to diagnose whether the generative model we
propose is robust to unknown and diverse sources
of variation mixed together in one training set (e.g.
NC + IWSLT or gold-standard + synthetic data).
However, note that a point we are certainly not try-
ing to make is that the model has been designed
to perform domain adaptation. Nonetheless, in
Appendix C we try to shed light on what hap-
pens when we use the model to translate genres
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WMT16 IWSLT14

Training Model BLEU ↑ BEER ↑ BLEU ↑ BEER ↑
EN-DE COND 17.6 (0.4) 53.9 (0.2) 23.9 (0.3) 59.3 (0.1)

JOINT 18.1 54.3 24.2 59.5
AEVNMT 18.4 (0.2) 54.5 (0.2) 24.1 (0.3) 59.5 (0.2)

DE-EN COND 21.6 (0.2) 55.5 (0.2) 29.1 (0.2) 60.9 (0.1)
JOINT 22.3 55.6 29.2 61.2
AEVNMT 22.3 (0.1) 55.6 (0.1) 29.2 (0.1) 61.1 (0.1)

Table 4: Test results for mixed-domain training: we report average (1std) across 5 independent runs for COND and
AEVNMT, but a single run of JOINT.

it has never seen. On a dataset covering various
unseen genres, we observe that both COND and
AEVNMT perform considerably worse showing
that without taking domain adaptation seriously
both models are inadequate. In terms of BLEU,
differences range from −0.3 to 0.8 (EN-DE) and
0.3 to 0.7 (DE-EN) and are mostly in favour of
AEVNMT (17/20 comparisons).

Remarks It is intuitive to expect latent variable
modelling to be most useful in settings containing
high variability in the data, i.e. mixed-domain and
synthetic data settings, though in our experiments
AEVNMT shows larger improvements in the in-
domain setting. We speculate two reasons for this:
i) it is conceivable that variation in the mixed-
domain and synthetic data settings are too large
to be well accounted by a diagonal Gaussian; and
ii) the benefits of latent variable modelling may
diminish as the amount of available data grows.

4.2 Probing latent space

To investigate what information the latent space
encodes we explore the idea of training simple
linear probes or diagnostic classifiers (Alain and
Bengio, 2017; Hupkes et al., 2018). With simple
Bayesian logistic regression we have managed to
predict from Z ∼ q(z|x) domain indicators (i.e.
newswire vs transcripts) and gold-standard vs syn-
thetic data at performance above 90% accuracy
on development set. However, a similar perfor-
mance is achieved from the deterministic average
state of the bidirectional encoder of the conditional
baseline. We have also been able to predict from
Z ∼ q(z|x) the level of noise in back-translated
data measured on the development set at the sen-
tence level by an automatic metric, i.e. METEOR,
with performance above what can be done with

random features. Though again, the performance
is not much better than what can be done with a
conditional baseline. Still, it is worth highlight-
ing that these aspects are rather coarse, and it is
possible that the performance gains we report in
§4.1 are due to far more nuanced variations in the
data. At this point, however, we do not have a
good qualitative assessment of this conjecture.

5 Related Work

Joint modelling In similar work, Shah and Bar-
ber (2018) propose a joint generative model whose
probabilistic formulation is essentially identical to
ours. Besides some small differences in archi-
tecture, our work differs in two regards: motiva-
tion and strategy for predictions. Their goal is to
jointly learn from multiple language pairs by shar-
ing a single polyglot architecture (Johnson et al.,
2017). Their strategy for prediction is based on a
form of stochastic hill-climbing, where they sam-
ple an initial z from the standard Gaussian prior
and decode via beam search in order to obtain
a draft translation ỹ = greedyy P (y|z, x).This
translation is then iteratively refined by encoding
the pair 〈x, ỹ〉, re-sampling z, though this time
from q(z|x, ỹ), and re-decoding with beam search.
Unlike our approach, this requires multiple calls to
the inference network and to beam search. More-
over, the inference model, which is trained on
gold-standard observations, is used on noisy tar-
get sentences.

Cotterell and Kreutzer (2018) interpret back-
translation as a single iteration of a wake-sleep al-
gorithm (Hinton et al., 1995) for a joint model of
bitext P (x, y|θ) = P (y|x, θ)P?(x). They sam-
ple directly from the data distribution P?(x) and
learn two NMT models, a generative P (y|x, θ)
and an auxiliary model Q(x|y, φ), each trained
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WMT16 EN-DE DE-EN

BLEU ↑ BEER ↑ BLEU ↑ BEER ↑
COND 17.8 (0.2) 53.1 (0.1) 20.1 (0.1) 53.7 (0.1)
+ synthetic data 22.3 (0.3) 57.0 (0.2) 26.9 (0.2) 58.5 (0.1)

JOINT + synthetic data 22.2 57.0 26.7 58.6
AEVNMT + synthetic data 22.5 (0.2) 57.0 (0.1) 27.4 (0.2) 58.8 (0.1)

Table 5: Test results for training on NC plus synthetic data (back-translated News Crawl): we report average (1std)
across 5 independent runs for COND and AEVNMT, but a single run of JOINT.

on a separate objective. Zhang et al. (2018) pro-
pose a joint model of bitext trained to incorporate
the back-translation heuristic as a trainable com-
ponent in a formulation similar to that of Cotterell
and Kreutzer (2018). In both cases, joint mod-
elling is done without a shared latent space and
without a source language model.

Multi-task learning An alternative to joint
learning is to turn to multi-task learning and ex-
plore parameter sharing across models trained on
different, though related, data with different ob-
jectives. For example, Cheng et al. (2016) incor-
porate both source and target monolingual data
by multi-tasking with a non-differentiable auto-
encoding objective. They jointly train a source-to-
target and target-to-source system that act as en-
coder and decoder respectively. Zhang and Zong
(2016) combine a source language model objec-
tive with a source-to-target conditional NMT ob-
jective and shared the source encoder in a multi-
task learning fashion.

Variational LMs and NMT Bowman et al.
(2016) first proposed to augment a neural lan-
guage model with a prior over latent space. Our
source component is an instance of their model.
More recently, Xu and Durrett (2018) proposed
to use a hyperspherical uniform prior rather than
a Gaussian and showed the former leads to bet-
ter representations. Zhang et al. (2016) proposed
the first VAE for NMT. They augment the condi-
tional with a Gaussian sentence embedding and
model observations as draws from the marginal
P (y|x, θ) =

∫
p(z|x, θ)P (y|x, z, θ)dz. Their for-

mulation is a conditional deep generative model
(Sohn et al., 2015) that does not model the source
side of the data, where, rather than a fixed standard
Gaussian, the latent model is itself parameterised
and depends on the data. Schulz et al. (2018)
extend the model of Zhang et al. (2016) with a

Markov chain of latent variables, one per timestep,
allowing the model to capture greater variability.

Latent domains In the context of statistical MT,
Cuong and Sima’an (2015) estimate a joint dis-
tribution over sentence pairs while marginalising
discrete latent domain indicators. Their model fac-
torises over word alignments and is not used di-
rectly for translation, but rather to improve word
and phrase alignments, or to perform data selec-
tion (Hoang and Sima’an, 2014), prior to train-
ing. There is a vast literature on domain adap-
tation for statistical machine translation (Cuong
and Sima’an, 2017), as well as for NMT (Chu and
Wang, 2018), but a full characterisation of this ex-
citing field is beyond the scope of this paper.

6 Discussion and Future Work

We have presented a joint generative model of
translation data that generates both observations
conditioned on a shared latent representation. Our
formulation leads to questions such as why joint
learning? and why latent variable modelling? to
which we give an answer based on statistical facts
about conditional modelling and marginalisation
as well as empirical evidence of improved perfor-
mance. Our model shows moderate but consis-
tent improvements across various settings and over
multiple independent runs.

In future work, we shall investigate datasets an-
notated with demographics and personal traits in
an attempt to assess how far we can go in cap-
turing fine grained variation. Though note that
if such factors of variation vary widely in distri-
bution, it may be naı̈ve to expect we can model
them well with a simple Gaussian prior. If that
turns out to be the case, we will investigate mixing
Gaussian components (Miao et al., 2016; Srivas-
tava and Sutton, 2017) and/or employing a hierar-
chical prior (Goyal et al., 2017).
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A Architectures

Here we describe parameterisation of the different
models presented in §3. Rather than completely
specifying standard blocks, we use the notation
block(inputs; parameters), where we give an indi-
cation of the relevant parameter set. This makes it
easier to visually track which model a component
belongs to.

A.1 Source Language Model
The source language model consists of a sequence
of categorical draws for i = 1, . . . , |x|

Xi|z, x<i ∼ Cat(gθ(z, x<i)) (13)

parameterised by a single-layer recurrent neural
network using GRU units:

fi = emb(xi; θemb-x) (14a)

h0 = tanh(affine(z; θinit-lm)) (14b)

hi = GRU(hi−1, fi−1; θgru-lm) (14c)

gθ(z, x<i) = softmax(affine(hi; θout-x)) . (14d)

We initialise the GRU cell with a transformation
(14b) of the stochastic encoding z. For the simple
joint model baseline we initialise the GRU with a
vector of zeros as there is no stochastic encoding
we can condition on in that case.

A.2 Translation Model
The translation model consists of a sequence of
categorical draws for j = 1, . . . , |y|

Yj |z, x, y<j ∼ Cat(fθ(z, x, y<j)) (15)

parameterised by an architecture that roughly fol-
lows Bahdanau et al. (2015). The encoder is a bidi-
rectional GRU encoder (16b) that shares source
embeddings with the language model (14a) and
is initialised with its own projection of the latent
representation put through a tanh activation. The
decoder, also initialised with its own projection of
the latent representation (16d), is a single-layer re-
current neural network with GRU units (16f). At
any timestep the decoder is a function of the pre-
vious state, previous output word embedding, and
a context vector. This context vector (16e) is a
weighted average of the bidirectional source en-
codings, of which the weights are computed by a
Bahdanau-style attention mechanism. The output
of the GRU decoder is projected to the target vo-
cabulary size and mapped to the simplex using a

softmax activation (17) to obtain the categorical
parameters:

s0 = tanh(affine(z; θinit-enc)) (16a)

sm1 = BiGRU(fm1 , s0; θbigru-x) (16b)

ej = emb(yj ; θemb-y) (16c)

t0 = tanh(affine(z; θinit-dec)) (16d)

cj = attention(sm1 , tj−1; θbahd) (16e)

tj = GRU(tj−1, [cj , ej−1]; θgru-dec) , (16f)

and

fθ(z, x, y<j) = softmax(affine([tj , ej−1, cj ]; θout-y)) .
(17)

In baseline models, recurrent cells are initialised
with a vector of zeros as there is no stochastic en-
coding we can condition on.

A.3 Inference Network
The inference model q(z|x, y, λ) is a diagonal
Gaussian

Z|x, y ∼ N (u, diag(s� s)) (18)

whose parameters are computed by an inference
network. We use two bidirectional GRU encoders
to encode the source and target sentences sepa-
rately. To spare memory, we reuse embeddings
from the generative model (19a-19b), but we pre-
vent updates to those parameters based on gradi-
ents of the inference network, which we indicate
with the function detach. To obtain fixed-size rep-
resentations for the sentences, GRU encodings are
averaged (19c-19d) .

fm1 = detach(emb(xm1 ; θemb-x)) (19a)

en1 = detach(emb(yn1 ; θemb-y)) (19b)

hx = avg
(
BiGRU

(
fm1 ;λgru-x

))
(19c)

hy = avg
(
BiGRU

(
en1 ;λgru-y

))
(19d)

hxy = concat(hx,hy) (19e)

hu = ReLU(affine(hxy;λu-hid)) (19f)

hs = ReLU(affine(hxy;λs-hid) (19g)

u = affine(hu;λu-out) (19h)

s = softplus(affine(hs;λs-out)) (19i)

We use a concatenation hxy of the average source
and target encodings (19e) as inputs to compute
the parameters of the Gaussian approximate pos-
terior, namely, d-dimensional location and scale
vectors. Both transformations use ReLU hidden
activations (Nair and Hinton, 2010), but locations
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live in Rd and therefore call for linear output acti-
vations (19h), whereas scales live in Rd>0 and call
for strictly positive outputs (19i), we follow Ku-
cukelbir et al. (2017) and use softplus. The com-
plete set of parameters used for inference is thus
λ = {λgru-x, λgru-y, λu-hid, λu-out, λs-hid, λs-out}.

A.4 Prediction Network

The prediction network parameterises our pre-
diction model r(z|x, φ), a variant of the infer-
ence model that conditions on the source sentence
alone. In §4 we explore several variants of the
ELBO using different parameterisations of rφ. In
the simplest case we do not condition on the target
sentence during training, thus we can use the same
network both for training and prediction. The net-
work is similar to the one described in A.3, except
that there is a single bidirectional GRU and we use
the average source encoding (19c) as input to the
predictors for u and s (20c-20d).

hu = ReLU(affine(hx;λu-hid)) (20a)

hs = ReLU(affine(hx;λs-hid)) (20b)

u = affine(hu;λu-out) (20c)

s = softplus(affine(hs;λs-out)) (20d)

In all other cases we use q(z|x, y, λ) parame-
terised as discussed in A.3 for training, and design
a separate network to parameterise rφ for predic-
tion. Much like the inference model, the predic-
tion model is a diagonal Gaussian

Z|x ∼ N (û, diag(̂s� ŝ)) (21)

also parameterised by d-dimensional location and
scale vectors, however in predicting û and ŝ (22d-
22e) it can only access an encoding of the source
(22a).

hx = avg
(
BiGRU

(
fm1 ;φgru-x

))
(22a)

hu = ReLU(affine(hx;φu-hid)) (22b)

hs = ReLU(affine(hx;φs-hid)) (22c)

û = affine(hu;φu-out) (22d)

ŝ = softplus(affine(hs;φs-out)) (22e)

The complete set of parameters is then φ =
{φgru-x, φu-hid, φu-out, φs-hid, φs-out}. For the deter-
ministic variant, we use û (22d) alone to approxi-
mate u (19h), i.e. the posterior mean of Z.

B Graphical models

Figure 1 is a graphical depiction of our AEVNMT
model. Circled nodes denote random variables
while uncircled nodes denote deterministic quan-
tities. Shaded random variables correspond to ob-
servations and unshaded random variables are la-
tent. The plate denotes a dataset of |D| observa-
tions.

yx

θ

z

|D|

(a) Generative model

yx

z λ

|D|

(b) Inference model

Figure 1: On the left we have AEVNMT, a generative
model parameterised by neural networks. On the right
we show an independently parameterised model used
for approximate posterior inference.

In Figure 2a, we illustrate the precise statisti-
cal assumptions of AEVNMT. Here plates iterate
over words in either the source or the target sen-
tence. Note that the arrow from xi to yj states that
the jth target word depends on all of the source
sentence, not on the ith source word alone, and
that is the case because xi is within the source
plate. In Figure 2b, we illustrate the statistical
dependencies induced in the marginal distribution
upon marginalisation of latent variables. Recall
that the marginal is the distribution which by as-
sumption produced the observed data. Now com-
pare that to the distribution modelled by the sim-
ple JOINT model (Figure 2c). Marginalisation in-
duces undirected dependencies amongst random
variables creating more structure in the marginal
distribution. In graphical models literature this
is known as moralisation (Koller and Friedman,
2009).
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xix<i

yjy<j

z

|x|

|y|

(a) Joint distribution of AEVNMT

yjy<j y>j

xix<i x>i

|x|

|y|

(b) Marginal distribution of AEVNMT

xix<i

yjy<j

|x|

|y|

(c) Joint distribution modelled without latent variables

Figure 2: Here we zoom in into the model of Figure 1a
to show the statistical dependencies between observed
variables. In the joint distribution (top), we have the
directed dependency of a source word on all of the pre-
vious source words, and similarly, of a target word on
all of the previous target words in addition to the com-
plete source sentence. Besides, all observations depend
directly on the latent variable Z. Marginalisation of Z
(middle) ties all variables together through undirected
connections. At the bottom we show the distribution
we get if we model the data distribution directly with-
out latent variables.

C Robustness to out-of-domain data

We use our stronger models, those trained on gold-
standard NC bilingual data and synthetic News
data, to translate test sets in various unseen gen-
res. These data sets are collected and distributed
by TAUS,8 and have been used in scenarios of ada-
pation to all domains at once (Cuong et al., 2016).
Table 6 shows the performance of AEVNMT and
the conditional baseline. The first thing to note
is the remarkable drop in performance showing
that without taking domain adaptation seriously
both models are inadequate. In terms of BLEU,
differences range from −0.3 to 0.8 (EN-DE) and
0.3 to 0.7 (DE-EN) and are mostly in favour of
AEVNMT, though note the increased standard de-
viations.

8TAUS Hardware, TAUS Software, TAUS Industrial
Electronics, TAUS Professional & Business Services, and
TAUS Legal available from TAUS data cloud http://
tausdata.org/.
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D Validation results

WMT16 IWSLT14

EN-DE DE-EN EN-DE DE-EN

COND 14.5 (0.2) 16.9 (0.2) 25.1 (0.1) 30.8 (0.1)
JOINT 14.8 17.1 25.2 31.0
AEVNMT 14.8 (0.2) 17.4 (0.2) 25.7 (0.0) 31.4 (0.0)

Table 7: Validation results reported in BLEU for in-domain training on NC and IWSLT: we report average (1std)
across 5 independent runs for COND and AEVNMT, but a single run of JOINT.

WMT & IWSLT EN-DE DE-EN

COND 20.5 (0.1) 25.9 (0.1)
JOINT 20.7 26.1
AEVNMT 20.8 (0.1) 26.1 (0.1)

Table 8: Validation results reported in BLEU for mixed-domain training: we report average (1std) across 5 inde-
pendent runs for COND and AEVNMT, but a single run of JOINT. The validation set used is a concatenation of
the development sets from WMT and IWSLT.

WMT16 EN-DE DE-EN

COND 14.5 (0.2) 16.9 (0.2)
+ synthetic data 17.4 (0.1) 21.8 (0.1)

JOINT + synthetic data 17.3 21.8
AEVNMT + synthetic data 17.6 (0.1) 22.1 (0.1)

Table 9: Validation results reported in BLEU for training on NC plus synthetic data: we report average (1std)
across 5 independent runs for COND and AEVNMT, but a single run of JOINT.
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Abstract

Bilingual word embeddings, which represent
lexicons of different languages in a shared em-
bedding space, are essential for supporting se-
mantic and knowledge transfers in a variety of
cross-lingual NLP tasks. Existing approaches
to training bilingual word embeddings require
often require pre-defined seed lexicons that are
expensive to obtain, or parallel sentences that
comprise coarse and noisy alignment. In con-
trast, we propose BilLex that leverages pub-
licly available lexical definitions for bilingual
word embedding learning. Without the need
of predefined seed lexicons, BilLex comprises
a novel word pairing strategy to automati-
cally identify and propagate the precise fine-
grained word alignment from lexical defini-
tions. We evaluate BilLex in word-level and
sentence-level translation tasks, which seek to
find the cross-lingual counterparts of words
and sentences respectively. BilLex signifi-
cantly outperforms previous embedding meth-
ods on both tasks.

1 Introduction
Bilingual word embeddings are the essential com-
ponents of multilingual NLP systems. These em-
beddings capture cross-lingual semantic transfers
of words and phrases from bilingual corpora, and
are widely deployed in many NLP tasks, such as
machine translation (Conneau et al., 2018), cross-
lingual Wikification (Tsai and Roth, 2016), knowl-
edge alignment (Chen et al., 2018) and semantic
search (Vulić and Moens, 2015).

A variety of approaches have been proposed to
learn bilingual word embeddings (Duong et al.,
2017; Luong et al., 2015; Coulmance et al., 2015).
Many such approaches rely on the use of aligned
corpora. Such corpora could be seed lexicons that
provide word-level mappings between two lan-
guages (Mikolov et al., 2013a; Xing et al., 2015),

or parallel corpora that align sentences and doc-
uments (Klementiev et al., 2012; Gouws et al.,
2015). However, these methods critically suf-
fer from several deficiencies. First, seed-lexicon-
based approaches are often hindered by the lim-
itedness of seeds (Vulić and Korhonen, 2016),
which is an intractable barrier since high-quality
seed lexicons require extensive human efforts to
obtain (Zhang et al., 2017). Second, parallel cor-
pora provide coarse alignment that does not often
accurately infer fine-grained semantic transfers of
lexicons (Ruder et al., 2017).

Unlike the existing methods, we propose to use
publicly available dictionaries1 for bilingual word
embedding learning. Dictionaries, such as Wik-
tionary and Merriam-Webster, contain large col-
lections of lexical definitions, which are clean lin-
guistic knowledge that naturally connects word
semantics within and across human languages.
Hence, dictionaries provide valuable information
to bridge the lexicons in different languages. How-
ever, cross-lingual learning from lexical defini-
tions is a non-trivial task. A straightforward ap-
proach based on aligning the target word embed-
ding to the aggregated embedding of words in the
definition might work, but not all words in a defini-
tion are semantically related to the defined target
word (Fig. 1(a)). Therefore, a successful model
has to effectively identify the most related lexicons
from the multi-granular and asymmetric alignment
of lexical definitions. Besides, how to leverage
both bilingual and monolingual dictionaries for
cross-lingual learning is another challenge.

In this paper, we propose BilLex (Bilingual
Word Embeddings Based on Lexical Definitions)
to learn bilingual word embeddings. BilLex con-
stitutes a carefully designed two-stage mechanism

1We refer to dictionary in its regular meaning, i.e. the
collections of word definitions. This is different from some
papers that refer to dictionaries as seed lexicons.
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to automatically cultivate, propagate and leverage
lexicon pairs of high semantic similarity from lex-
ical definitions in dictionaries. It first extracts
bilingual strong word pairs from bilingual lexi-
cal definitions of which the words contribute to
the cross-lingual definitions of each other. On top
of that, our model automatically exploits induced
word pairs, which utilize monolingual dictionar-
ies and the aforementioned strong pairs to exploit
semantically related word pairs. This automated
word pair induction process enables BilLex to cap-
ture abundant high-quality lexical alignment infor-
mation, based on which the cross-lingual seman-
tic transfer of words is easily captured in a shared
embedding space. Experimental results on word-
level and sentence-level translation tasks show that
BilLex drastically outperforms various baselines
that are trained on parallel or seed-lexicon corpora,
as well as state-of-the-art unsupervised methods.

2 Related Work

Prior approaches to learning bilingual word em-
beddings often rely on word or sentence align-
ment (Ruder et al., 2017). In particular, seed
lexicon methods (Mikolov et al., 2013a; Faruqui
and Dyer, 2014; Guo et al., 2015) learn transfor-
mations across different language-specific embed-
ding spaces based on predefined word alignment.
The performance of these approaches is limited by
the sufficiency of seed lexicons. Besides, parallel
corpora methods (Gouws et al., 2015; Coulmance
et al., 2015) leverage the aligned sentences in dif-
ferent languages and force the representations of
corresponding sentence components to be simi-
lar. However, aligned sentences merely provide
weak alignment of lexicons that do not accurately
capture the one-to-one mapping of words, while
such a mapping is well-desired by translation tasks
(Upadhyay et al., 2016). In addition, a few unsu-
pervised approaches alleviate the use of bilingual
resources (Chen and Cardie, 2018; Conneau et al.,
2018). These models require considerable effort
to train and rely heavily on massive monolingual
corpora.

Monolingual lexical definitions have been used
for weak supervision of monolingual word simi-
larities (Tissier et al., 2017). Our work demon-
strates that dictionary information can be extended
to a cross-lingual scenario, for which we develop a
simple yet effective induction method to populate
fine-grain word alignment.

3 Modeling
We first provide the formal definition of bilingual
dictionaries. Let L be the set of languages and L2
be the set of ordered language pairs. For a lan-
guage l ∈ L, we use Vl to denote its vocabulary,
where for each word w ∈ Vl, w ∈ Rk denotes its
embedding vector. A dictionary denoted as Dli,lj

contains words in language li and their definitions
in lj . In particular, Dli,lj is a monolingual dic-
tionary if li = lj and is a bilingual dictionary if
li 6= lj . A dictionary Dli,lj contains dictionary en-
tries (wi, Qj(wi)), where wi ∈ Vli is the word be-
ing defined and Qj(wi) is a sequence of words in
lj describing the meaning of the wordwi. Fig. 1(a)
shows an entry from an English-French dictionary,
and one from a French-English dictionary.

BilLex allows us to exploit semantically related
word pairs in two stages. We first use bilingual
dictionaries to construct bilingual strong pairs,
which are similar to those monolingual word pairs
in (Tissier et al., 2017). Then based on the given
strong word pairs and monolingual dictionaries,
we provide two types of induced word pairs to fur-
ther enhance the cross-lingual learning.

3.1 Bilingual Strong Pairs

A bilingual strong pair contains two words with
high semantic relevance. Such a pair of words that
mutually contribute to the cross-lingual definitions
of each other is defined as below.
Definition (Bilingual Strong Pairs) PS

li,lj
is the

set of bilingual strong pairs in (li, lj) ∈ L2
(li 6= lj), where each word pair is defined as:
(wi, wj) ∈ PS

li,lj
⇔ wi ∈ Qi(wj) ∧ wj ∈ Qj(wi)

Intuitively, if wi appears in the cross-lingual
definition of wj and wj appears in the cross-
lingual definition of wi, then wi and wj should
be semantically close to each other. Particularly,
PS
li,lj

denotes monolingual strong pairs if li = lj .
For instance, (car, véhicule) depicted in Fig. 1(a)
form a bilingual strong pair. Note that Tissier et al.
also introduce the monolingual weak pairs by pair-
ing the target word with the other words from its
definition, which do not form strong pairs with it.
However, we do not extend such weak pairs to the
bilingual setting, as we find them to be inaccurate
to represent cross-lingual corresponding words.

3.2 Induced Word Pairs

Since bilingual lexical definitions cover only lim-
ited numbers of words in two languages, we in-
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(a) Bilingual strong pair

(b) Directly induced pair (c) Indirectly induced pair

Figure 1: Examples of three types of word pairs. The
blue words in (b-c) are pivot words of the induced pairs.

corporate both monolingual and bilingual strong
pairs, from which we induce two types of word
pairs with different confidence: directly induced
pairs and indirectly induced pairs.
Definition (Bilingual Directly Induced Pairs)
PD
li,lj

is the set of bilingual directly induced pairs
in (li, lj) ∈ L2, where each word pair is de-
fined as: (wi, wj) ∈ PD

li,lj
⇔ ∃wi

p, (w
i, wi

p) ∈
PS
li,li
∧ (wi

p, w
j) ∈ PS

li,lj

Intuitively, a bilingual induced pair (wi, wj) in-
dicates that we can find a pivot word that forms
a monolingual strong pair with one word from
(wi, wj) and a bilingual strong pair with the other.
Definition (Bilingual Indirectly Induced Pairs)
P I
li,lj

is the set of bilingual indirectly induced pairs
in (li, lj) ∈ L2, where each word pair is de-
fined as: (wi, wj) ∈ P I

li,lj
⇔ ∃(wi

p, w
j
p) ∈

PS
li,lj

, (wi, wi
p) ∈ PS

li,li
∧ (wj , wj

p) ∈ PS
lj ,lj

A bilingual indirectly induced pair (wi, wj) in-
dicates that there exists a pivot bilingual strong
pair (wi

p, w
j
p), such that wi

p forms a monolingual
strong pair with wi and wj

p forms a monolingual
strong pair with wj . Fig. 1(b-c) shows examples
of the two types of induced word pairs.

3.3 Training
Our model jointly learns three word-pair-based
cross-lingual objectives ΩK to align the embed-
ding spaces of two languages, and two mono-
lingual monolingual Skip-Gram losses (Mikolov
et al., 2013b) Lli , Llj to preserve monolingual
word similarities. Given a language pair (li, lj) ∈

L2, the learning objective of BilLex is to minimize
the following joint loss function:

J = Lli + Llj +
∑

K∈{PS ,PD,P I}
λKΩK

Each λK (K ∈ {PS , PD, P I}) thereof, is the
hyperparameter that controls how much the corre-
sponding type of word pairs contributes to cross-
lingual learning. For alignment objectives, we
use word pairs in both directions of an ordered
language pair (li, lj) ∈ L2 to capture the cross-
lingual semantic similarity of words, such that
PS = PS

li,lj
∪PS

lj ,li
, PD = PD

li,lj
∪PD

lj ,li
and P I =

P I
li,lj
∪ P I

lj ,li
. Then for each K ∈ {PS , PD, P I},

the alignment objective ΩK is defined as below,
where σ is the sigmoid function.

ΩK = − 1

|K|
∑

(wi,wj)∈K

(
log σ(wi>wj)

+
∑

(wa,wb)∈Ni(wj)∪Nj(wi)

log σ(−wa
>wb)

)

For each word pair (wi, wj), we use the uni-
gram distribution raised to the power of 0.75 to
select a number of words in lj (or li) forwi (orwj)
to form a negative sample setNi(w

j) (orNj(w
i)).

Without loss of generality, we define the nega-
tive sample set as Ni(w

j) = {(wi
n, w

j)|wi
n ∼

Ui(w)∧(wi
n, w

j) /∈ PS∪PD∪P I}, where Ui(w)
is the distribution of words in li.

4 Experiment
We evaluate BilLex on two bilingual tasks:
word translation and sentence translation re-
trieval. Following the convention (Gouws et al.,
2015; Mogadala and Rettinger, 2016), we evalu-
ate BilLex between English-French and English-
Spanish. Accordingly, we extract word pairs from
both directions of bilingual dictionaries in Wik-
tionary for these language pairs. To support the
induced word pairs, we also extract monolingual
lexical definitions in the three languages involved,
which include 238k entries in English, 107k en-
tries in French and 49k entries in Spanish. The
word pair extraction process of BilLex excludes
stop words and punctuation in the lexical defini-
tions. The statistics of three types of extracted
word pairs are reported in Table 1.

4.1 Word translation
This task aims to retrieve the translation of a
source word in the target language. We use the
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Lang #Def S ID II
En&Fr 108,638 52,406 48,524 62,488
En&Es 56,239 32,210 29,857 37,952

Table 1: Statistics of dictionaries and word pair sets.

Language En-Fr Fr-En En-Es Es-En
Metric P@1 P@5 P@1 P@5 P@1 P@5 P@1 P@5

BiCVM 41.8 56.6 42.6 58.4 37.8 52.8 39.9 54.2
BilBOWA 42.3 59.7 45.2 59.2 37.6 50.3 45.8 53.7

BiSkip 44.0 58.4 45.9 60.2 41.2 58.0 45.4 56.9
Supervised MUSE 74.9 89.8 76.1 90.9 77.4 93.8 77.3 93.6

Unsupervised MUSE 78.1 94.3 78.2 93.0 81.7 94.4 83.3 96.6
BilLex(PS ) 62.4 79.2 61.8 77.4 64.3 78.4 61.9 78.0

BilLex(PS+PD) 73.6 87.3 75.3 87.7 73.7 88.7 76.0 90.2
BilLex(PS+PD+P I ) 82.5 96.2 83.8 96.0 82.0 96.5 85.1 96.8

Table 2: Results of the word translation task.

test set provided by Conneau et al. (2018), which
selects the most frequent 200k words of each lan-
guage as candidates for 1.5k query words. We
translate a query word by retrieving its k near-
est neighbours in the target language, and report
P@k (k = 1, 5) to represent the fraction of cor-
rect translations that are ranked not larger than k.
Evaluation protocol. The hyperparameters of
BilLex are tuned based on a small validation set of
1k word pairs provided by Conneau et al. (2018).
We allocate 128-dimensional word embeddings
with pre-trained BilBOWA (Gouws et al., 2015).
and use the standard configuration to Skip-Gram
(Mikolov et al., 2013b) on monolingual Wikipedia
dumps. We set the negative sampling size of bilin-
gual word pairs to 4, which is selected from 0 to 10
with the step of 1. λPS is set to 0.9, which is tuned
from 0 to 1 with the step of 0.1. As we assume that
the strong pair relations between words are inde-
pendent, we empirically set λPD = (λPS )2 = 0.81
and λP I = (λPS )3 = 0.729. We minimize the loss
function using AMSGrad (Reddi et al., 2018) with
a learning rate of 0.001. The training is terminated
based on early stopping. We limit the vocabular-
ies as the 200k most frequent words in each lan-
guage, and exclude the bilingual strong pairs that
have appeared in the test set. The baselines we
compare against include BiCVM (Hermann and
Blunsom, 2014), BilBOWA (Gouws et al., 2015),
Biskip (Luong et al., 2015), supervised and unsu-
pervised MUSE (Conneau et al., 2018).
Results. Results are summarized in Table 2,
where the performance of BilLex is reported for
three variants: (i) training with bilingual strong
pairs only BilLex(PS), (ii) with directly induced
pair added BilLex(PS+PD), and (iii) with all
three types of word pairs BilLex(PS+PD+P I ).
BilLex(PS+PD+P I ) thereof, offers consistently
better performance in all settings, which implies

Language En-Fr Fr-En
Metric P@1 P@5 P@1 P@5

BiCVM 24.4 40.5 32.3 43.8
BilBOWA 27.7 41.4 31.5 47.0

BiSkip 25.3 38.8 26.4 40.4
Supervised MUSE 63.2 76.9 74.9 85.4

Unsupervised MUSE 60.0 76.3 73.7 87.6
BilLex(PS ) 47.4 59.7 57.2 69.6

BilLex(PS+PD) 58.7 73.8 67.6 78.9
BilLex(PS+PD+P I ) 64.9 78.2 76.3 89.7

Table 3: Results of sentence translation retrieval.

that the induced word pairs are effective in im-
proving the cross-lingual learning of lexical se-
mantics. Among the baseline models, the unsu-
pervised MUSE outperforms the other four super-
vised ones. We also discover that for the word
translation task, the supervised models with coarse
alignment such as BiCVM and BilBOWA do not
perform as well as the models with word-level su-
pervision, such as BiSkip and supervised MUSE.
Our best BilLex outperforms unsupervised MUSE
by 4.4∼5.7% of P@1 between En and Fr, and by
0.3∼1.8% between En and Es. The reason why the
settings between En and Fr achieve better perfor-
mance is that there are much fewer bilingual defi-
nitions between En and Es.

4.2 Sentence translation retrieval

This task focuses on retrieving the sentence in the
target language space with the tf-idf weighted sen-
tence representation approach. We follow the ex-
periment setup in (Conneau et al., 2018) with 2k
source sentence queries and 200k target sentences
from the Europarl corpus for English and French.
We carry forward model configurations from the
previous experiment, and report P@k (k = 1, 5).
Results. The results are reported in Table 3. Over-
all, our best model variant BilLex(PS+PD+P I )
performs better than the best baseline with a no-
ticeable increment of P@1 by 1.4∼1.7% and P@5
by 1.3∼2.1%. This demonstrates that BilLex is
suitable for transferring sentential semantics.

5 Conclusion
In this paper, we propose BilLex, a novel bilin-
gual word embedding model based on lexical defi-
nitions. BilLex is motivated by the fact that openly
available dictionaries offer high-quality linguistic
knowledge to connect lexicons across languages.
We design the word pair induction method to
capture semantically related lexicons in dictio-
naries, which serve as alignment information in
joint training. BilLex outperforms state-of-the-art
methods on word and sentence translation tasks.
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Word translation without parallel data. ICLR.

Jocelyn Coulmance, Jean-Marc Marty, Guillaume
Wenzek, and Amine Benhalloum. 2015. Trans-
gram, fast cross-lingual word-embeddings.

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven
Bird, and Trevor Cohn. 2017. Multilingual training
of crosslingual word embeddings. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, volume 1, pages 894–904.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 462–471.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. Bilbowa: Fast bilingual distributed represen-
tations without word alignments. In Inter National
Conference on Machine Learning.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), vol-
ume 1, pages 1234–1244.

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed seman-
tics. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), volume 1, pages 58–68.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed rep-
resentations of words. In Proceedings of COLING
2012.

Thang Luong, Hieu Pham, and Christopher D Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of
NAACL-HLT, pages 151–159.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013a.
Exploiting similarities among languages for ma-
chine translation. CoRR,abs/1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Aditya Mogadala and Achim Rettinger. 2016. Bilin-
gual word embeddings from parallel and non-
parallel corpora for cross-language text classifica-
tion. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 692–702.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar.
2018. On the convergence of adam and beyond. In
ICLR.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard.
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Abstract

Fine-tuning pre-trained language models has
significantly advanced the state of art in a wide
range of downstream NLP tasks. Usually,
such language models are learned from large
and well-formed text corpora from e.g. en-
cyclopedic resources, books or news. How-
ever, a significant amount of the text to be
analyzed nowadays is Web data, often from
social media. In this paper we consider
the research question: How do standard pre-
trained language models generalize and cap-
ture the peculiarities of rather short, informal
and frequently automatically generated text
found in social media? To answer this ques-
tion, we focus on bot detection in Twitter as
our evaluation task and test the performance
of fine-tuning approaches based on language
models against popular neural architectures
such as LSTM and CNN combined with pre-
trained and contextualized embeddings. Our
results also show strong performance varia-
tions among the different language model ap-
proaches, which suggest further research.

1 Introduction

Recently, transfer learning techniques (Pan and
Yang, 2010) based on language models have suc-
cessfully delivered breaktrough accuracies in all
kinds of downstream NLP tasks. Approaches like
ULMFiT (Howard and Ruder, 2018), Open AI
GPT (Radford et al., 2018) and BERT (Devlin
et al., 2018) have in common the generation of
pre-trained models learned from very large text
corpora. The resulting language models are then
fine-tuned for the specific domain and task, contin-
uously advancing the state of the art across the dif-
ferent evaluation tasks and benchmarks commonly
used by the NLP community.

Transfer learning approaches based on language
models are therefore the NLP analogue to similar

approaches in other fields of AI like Computer Vi-
sion, where the availability of large datasets like
ImageNet (Deng et al., 2009) enabled the develop-
ment of state of the art pre-trained models. Before
language models, common practice for transfer
learning in NLP was based on pre-trained context-
independent embeddings. These are also learned
from large corpora and encode different types of
syntactic and semantic relations that can be ob-
served when operating on the vector space. How-
ever, their use is limited to the input layer of neu-
ral architectures, and hence the amount of data
and training effort necessary to learn a high per-
formance task-related model is high since it is
still necessary to train the whole network. Pre-
trained language models, on the other hand, at-
tempt to learn in the network structure the word
inter-relations that can be leveraged during the
fine-tuning step, usually by just learning a feed
forward network for the specific task. The network
architecture varies depending on the approach, in-
cluding transformers (Vaswani et al., 2017) based
on decoders, encoders and attention mechanisms,
and bi-directional long-short term memory net-
works (Hochreiter and Schmidhuber, 1997).

Language models are usually learnt from high
quality, grammatically correct and curated text
corpora, such as Wikipedia (ULMFiT), BookCor-
pus (Open AI GPT), a combination of Wikipedia
and BookCorpus (BERT) or News (ELMo). How-
ever, a very significant amount of the text to be
analyzed nowadays is Web data, frequently from
social media. The question that immediately arises
is therefore whether such language models also
capture the nuances of the short and informal lan-
guage often found in social media channels.

In this paper we explore this question and em-
pirically study how pre-trained embeddings and
language models perform when used to analyze
text from social media. To this purpose, we focus
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on bot detection in Twitter as evaluation task for
two main reasons. First, the intrinsic relevance of
the task for counteracting the automatic spreading
of disinformation and bias on social media. Sec-
ond, because in this context the gap, in terms of the
quality and overall characteristics of the language
used, between the corpora used to learn the lan-
guage models and the task-specific text to be ana-
lyzed (automatically generated in a social media,
micro-blogging context) can be particularly repre-
sentative.

In our experiments, prior to evaluating the be-
havior of pre-trained language models, we test
pre-trained embeddings as a baseline learned from
general corpora, social media and informal vocab-
ularies. We choose two popular NLP neural ar-
chitectures for our binary classification task: Long
Short Term memory networks (LSTM; Hochre-
iter and Schmidhuber, 1997) and convolutional
networks (CNN; LeCun et al., 1998). We
also pre-processed our Twitter dataset, observing
a positive effect on our CNN and LSTM classi-
fiers while on the other hand such effect was ac-
tually negative on some of the tested pre-trained
language models.

In general, our results indicate that fine-
tuned pre-trained language models outperform
pre-trained and contextualized embeddings used
in conjunction with CNN or LSTM for the task
at hand. This shows evidence that language mod-
els actually capture much of the peculiarities of
social media and bot language or at least are flexi-
ble enough to generalize during fine-tuning in such
context. From the different language models we
evaluated, Open AI GPT beats BERT (base) and
ULMFit in the bot/no bot classification task, sug-
gesting that a forward and unidirectional language
model is more appropriated for social media mes-
sages than other language modeling architectures,
which is relatively surprising. Nevertheless, the
considerable experimentation we carried out has
raised a number of additional questions that will
need further research. During the workshop, we
aim at sharing and discussing these questions with
the participants.

The rest of the paper is structured as follows.
Section 2 describes the state of the art about the
different models and embeddings used in the ex-
periments. Next, the experimental setup is pre-
sented in section 3, where the learning objective
is defined as well as the dataset and the used

pre-trained embeddings. Section 4 and 5 present
the experiments using CNN and LSTM and dif-
ferent combinations of pre-trained, contextualized
and dynamically generated embeddings learnt dur-
ing training of the bot/no bot classification model.
Then, section 6 describes the experiments with
pre-trained language models. Finally, a discussion
about the results is presented in section 7.

2 State of the Art

Mikolov’s word2vec (Mikolov et al., 2013) ap-
proach that proposes an efficient way to learn
embeddings by predicting words based on their
context using negative sampling sparkled a new
generation of embedding learning methods like
GloVe (Pennington et al., 2014), Swivel (Shazeer
et al., 2016) and FastText (Joulin et al., 2016).
These embeddings capture semantic and syntac-
tic relations between words that were mapped to
vector operations in the multidimensional space.
Nevertheless these approaches generate static,
context-independent embeddings for words in the
vocabulary. ELMo (Peters et al., 2018) overcome
this limitation by generating representations for
each word as a function of the input sentence. In
addition, while pre-trained embeddings are used
as input for neural networks, ELMo allows the
end-task model to learn a contextualized linear
combination of its internal representation.

Pre-trained embeddings are used as the first
layer of models or as additional features to neu-
ral architectures. However as the models are ini-
tialized randomly a lot of training data was still
required to get a high performance. To alleviate
this problem ULMFiT (Howard and Ruder, 2018)
proposes a transfer learning method that pre-trains
a language model on a large corpus using 3-layer
LSTM architecture that is then fine-tuned on the
target task. In fact, the fine tuning is done at the
language model level to reflect the target task dis-
tribution and at the task level.

In the same vein the Open AI Generative Pre-
trained Transformer (GPT) (Radford et al., 2018)
learns a language model on a large corpus us-
ing a multi-layer transformer decoder, and super-
vised fine-tuning to adapt the parameters to the tar-
get task. For tasks other than text classification
the input is transformed into an ordered sequence
that the pre-trained model can process. In con-
trast, BERT uses a bidirectional transformer (De-
vlin et al., 2018), also known as a transformer
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encoder, that learns representations jointly condi-
tioned on left and right context in all layers. Sim-
ilar to ELMo, ULMFiT and Open AI GPT which
pre-train language models, BERT learning objec-
tive is a masked language model and a binarized
next sentence prediction tasks. For a classifica-
tion process all of the parameters of BERT and the
classification layer are fine-tuned jointly to maxi-
mize the log-probability of the correct label.

Our contribution is an empirical study on the
fitness of the fine-tuning of pre-trained language
models when tested against text from social media
and the target task is classification. We also show
how pre-processing of the target task corpus can
affect the performance of the pre-trained models,
and compare them with the use of pre-trained and
contextualized embeddings as inputs of CNN and
BiLSTM for the classification task.

3 Experiments

To evaluate pre-trained language models with
Twitter data we focus on the relevant problem of
detecting bots in social media. Bots are automatic
agents that publish information for a variety of
purposes such as weather and natural hazards up-
dates, and news, but also for spreading misinfor-
mation and fake news. In fact, as of 2017 it has
been estimated that as 9% to 15% of twitter ac-
counts are bots (Varol et al., 2017) which means
that out of the 321 million active user accounts1

the number of automatic agents range from 28 to
48 million.

Detecting bots can be addressed as a binary
classification problem focusing only in the tweet
textual content since our main target are language
models, regardless of the other features that might
be drawn from the social network, such user meta-
data, network features based on the follower and
followee relations, and tweet and retweet activity.

3.1 Dataset

To generate a dataset of tweets generated by bots
or humans we rely on an existing dataset of bot and
human accounts published by Gilani et al. (2017).
We create a balanced dataset containing tweets la-
belled as bot or human according to the account la-
bel. In total our dataset comprises 500,000 tweets

1Twitter 4th quarter and fiscal year 2018 results:
https://www.prnewswire.com/news-releases/twitter-
announces-fourth-quarter-and-fiscal-year-2018-results-
300791624.html

where 279,495 tweets were created by 1,208 hu-
man accounts, and 220,505 tweets were tweeted
from 722 bot accounts.

In this sample, bots tend to be more prolific than
humans since they average 305 tweets per account
which contrasts with the human average of 231.
In addition, bots tend to use more URL (0.8313
URL per tweet) and hash tags (0.4745 hashtags
per tweets) in their tweets than humans (0.5781
URL and 0.2887 hashtags per tweet). This shows
that bots aim at maximizing visibility (hashtags)
and to redirect traffic to other sources (URL). Fi-
nally, we found that bots display more egoistic
behaviour than humans since they mention other
users in their tweets (0.4371 user mentions per
tweet) less frequently than humans (0.5781 user
mentions per tweet).

3.2 Pre-trained embeddings

We use pre-trained embeddings to train the clas-
sifiers rather than doing it from scratch. We use
pre-trained embeddings learned from Twitter it-
self, urban dictionary definitions to accommodate
the informal vocabulary often used in the social
network, and common crawl as a general source
of information:

• glove.twitter2: 200 dimension embeddings
generated from Twitter (27B tokens, 1.2M
vocabulary) using GloVe (Pennington et al.,
2014).
• word2vec.urban3: 100 dimension em-

beddings generated from Urban Dictio-
nary definitions (568K vocabulary) using
Word2Vec (Mikolov et al., 2013).
• fastText.crawl4: 300 dimension embed-

dings generated from Common Crawl
(600B tokens, 1.9M vocabulary) using
fastText (Mikolov et al., 2018)

4 CNN for text classification

We use convolutional neural networks (CNN; Le-
Cun et al., 1998) for the bot detection task inspired
by Kim’s work (Kim, 2014) that showed how this
architecture achieved good performance in sev-
eral sentence classification tasks, and other reports
like (Yin et al., 2017) that show good results in
NLP tasks. The neural network architecture uses

2https://nlp.stanford.edu/projects/glove/
3https://data.world/jaredfern/urban-dictionary-

embedding
4https://fasttext.cc/docs/en/english-vectors.html
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3 convolutional layers and a fully connected layer.
Each convolutional layer has 128 filters of size 5,
relu was used as activation function and max pool-
ing was applied in each layer. The fully connected
layer uses softmax as activation function to pre-
dict the probability of each message being written
by a bot or a human. All the experiments reported
hereinafter use a vocabulary size of 20k tokens,
sequence size 200, learning rate 0.001, 5 epochs,
128 batch size, static embeddings unless otherwise
stated, and 10-fold cross validation.

First we train the CNN classifier on our dataset
using pre-trained embeddings and compare them
with randomly generated embeddings. In addition,
we pre-process our dataset using the same pre-
processing script5 that was applied when learn-
ing the GloVe Twitter embeddings. This pre-
processing replaces, for example, URL, numbers,
user mentions, hashtags and some ascii emoticons
with the corresponding tags. Evaluation results are
presented in table 1.

Embeddings Dim. Pre-proc. Precision Recall F-Measure

random 300 No 0.7567 0.7551 0.7517

glove.twitter 200
No 0.7641 0.7618 0.7587
Yes 0.7834 0.7790 0.7750

word2vec.urban 100
No 0.7122 0.7119 0.7075
Yes 0.7601 0.7565 0.7522

fastText.crawl 300
No 0.7679 0.7659 0.7627
Yes 0.7858 0.7849 0.7829

Table 1: Evaluation of CNN classifiers using random
and pre-trained embeddings. Bold and italics are used
for best classifiers using pre-processing or not pre-
processing respectively.

In this setting, the best classifiers, according to
the f-measure, is learned using fastText common
crawl embeddings and the pre-processed dataset,
followed by the classifier that uses GloVe Twit-
ter embeddings also with pre-processing. In gen-
eral pre-processing improves all the classifiers and
evaluation metrics. Also notice that the CNN with
word2vec urban dictionary embeddings without
pre-processing underperformed the classifier that
uses random embeddings, however when using
pre-processing the metrics are better for the for-
mer.

4.1 Contextualized embeddings

In addition to static pre-trained embeddings we
train CNN classifiers with dinamically-generated

5https://nlp.stanford.edu/projects/glove/pre-process-
twitter.rb

embeddings using ELMo. ELMo embeddings
were generated from our dataset, however none of
the trainable parameters (i.e., linear combination
weights) were modified in the process. Due to the
high dimension of these embeddings (dim=1024)
we reduced the sequence size to 50 to avoid mem-
ory errors. Evaluation results, reported in table 2,
shows that when the corpus was not pre-processed
ELMo embeddings produced the best classifier, in
terms of f-measure, when compared with classi-
fiers learned from pre-trained embedddings and a
dataset without pre-processing (see results in table
1 for comparison).

Embeddings Dim Preproc. Precision Recall F-Measure

ELMo 1024
No 0.7766 0.7719 0.7675
Yes 0.7859 0.7827 0.7798

Table 2: Evaluation of CNN classifiers using contextu-
alized embeddings.

However, when the corpus was pre-processed
the classifier learned from ELMo embeddings un-
derperforms with respect to the best classifier
learned from fastText common crawl embeddings,
while outperforms the classifiers learned from
GloVe and Urban dictionary. Nevertheless, in this
setting ELMo embeddings produces the classifier
with highest precision. Another important find-
ing is that ELMo embeddings always generates the
classifier with highest precision, regardless of data
pre-processings.

4.2 Combining embeddings

We experiment by concatenating different pre-
trained embeddings in the input layer of the CNN.
Since fastText embeddings learned the best clas-
sifiers we pivot around them. Results in table 3
show that the best classifier is learned using fast-
Text common crawl and GloVe Twitter embed-
dings with data pre-processing, and this classifier
is better than any of the previous classifiers re-
ported in tables 1 and 2.

Nevertheless, if we consider the results with-
out pre-processing the combination of these em-
beddings with ELMo generates the best classifier,
which is compatible with what we found above
when ELMo embeddings help to learn the best
classifier when the dataset was not pre-processed
(see table 2). Similarly, this combination of em-
beddings helps to learn the classifier with highest
precision regardless data pre-proccessing.
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Embeddings Pre-proc. Precision Recall F-Measure

fastText.crawl+glove.twitter
No 0.7724 0.7704 0.7672
Yes 0.7906 0.7887 0.7862

fastText.crawl+word2vec.urban
No 0.7598 0.7566 0.7526
Yes 0.7826 0.7798 0.7767

fastText.crawl + glove.twitter
+ word2vec urban

No 0.7675 0.7644 0.7606
Yes 0.7806 0.7782 0.775

fastText.crawl + glove.twitter
+ ELMo

No 0.7787 0.7771 0.7744
Yes 0.7925 0.7861 0.7816

Table 3: Evaluation of CNN classifiers using concate-
nations of pre-trained and contextualized embeddings.
Bold and italics are used for best classifiers using pre-
processing or not pre-processing respectively.

4.3 Dynamic and pre-trained embeddings
Another option to improve these classifiers is to
allow the CNN to adjust dynamically the embed-
dings or part of them in the learning process. To
do so, we generate 300 dimension embeddings
initialized randomly and configure the CNN to
make them trainable. In addition, we concatenate
these random and trainable embeddings to the pre-
trained and ELMo embeddings, which were not
modified in the learning process. In this round of
experiments we always use pre-processing since in
the previous sections this option always improved
the classifiers.

Table 4 shows that dynamic embeddings by
themselves help to learn a classifier better than
all the previous reported. Nevertheless, there ex-
ists the risk of over-fitting since the embeddings
are tailored to the classification task, and that is
why it makes sense to combine them with embed-
dings learned from other corpora. In this case, the
combination of dynamic and ELMo embeddings
generates the best classifier. Another interesting
finding is that for the first time a classifier using
word2vec urban dictionary is better than the others
using GloVe twitter and fastText common crawl.
We think that the reduced dimensionality of ur-
ban dictionary embeddings (100 dim) compared to
Twitter and common crawl embeddings (200 dim
and 300dim) allows the dynamic embeddings (300
dim) to influence more the learning process, and
achieve better results.

Embeddings Precision Recall F-Measure

dynamic 0.7956 0.7957 0.7950
dynamic + glove.twitter 0.8051 0.8042 0.8027
dynamic + fastText.crawl 0.8013 0.8016 0.8009
dynamic + word2vec.urban 0.8066 0.8053 0.8034
dynamic + ELMo 0.8125 0.8097 0.8073

Table 4: Evaluation of CNN classifiers using dynamic
embeddings and pre-trained and contextualized embed-
dings using a pre-processed dataset

In addition, as shown in table 5 we evaluate
different combination of the dynamic embeddings
and concatenations of the pre-trained and contex-
tualized embeddings. None of these attempts gen-
erate a better classifier than the one using the com-
bination of dynamic embeddings and ELMo. Nev-
ertheless, concatenating more embeddings never
worsens the evaluation results, and most of the
time improves them, with the exception of ELMo
embeddings.

Embeddings Precision Recall F-Measure

dynamic + glove.twitter
+ word2vec.urban

0.8067 0.8056 0.8041

dynamic + fastText.crawl
+glove.twitter

0.8057 0.8045 0.8027

dynamic + fastText.crawl + glove
.twitter + word2vec.urban

0.8092 0.8078 0.8060

dynamic + fastText.crawl + ELMo 0.8118 0.8093 0.8070
dynamic + fastText.crawl + glove
.twitter+ELMo

0.8105 0.8088 0.8070

dynamic + fastText.crawl + glove
.twitter+word2vec.urban+ELMo

0.8131 0.8096 0.8069

Table 5: Evaluation of CNN classifiers using dynamic
embeddings and concatenations of to pre-trained and
contextualized embeddings.

Figure 1 presents an overview of all the CNN
classifiers evaluated so far using pre-processing
sorted in descending order by f-measure. This fig-
ure shows how different classifiers were generated
by using initially single pre-trained embeddings
and combinations of them. The upper part of the
figure is dominated by classifiers that use dynamic
and pre-trained embeddings where ELMo embed-
dings are always involved.

5 Bidirectional long short term memory
networks

In addition to CNN we test Long Short
Term Memory networks LSTM (Hochreiter and
Schmidhuber, 1997), a neural architecture that is
also often used in NLP tasks (Yin et al., 2017).
LSTM are sequential networks that are able to
learn long-term dependencies. In our experiments
we use a bidirectional LSTM that processes the se-
quence of text forward and backward to learn the
model. The architecture of the BiLSTM comprises
an embedding layer, the BiLSTM layer with 50
processing cells, and a fully connected layer that
uses softmax as activation function to predict the
probability of each message being written by a bot
or a human. The rest of hyperparameters are set
with the same values that we use for the CNN ex-
periments.
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Figure 1: Evaluation of CNN classifiers learned from the single and concatenated pre-trained, contextualized and
dynamic embeddings. The results are sorted in descending order by f-measure

In our experiments we test the embeddings
combination that generates the best CNN classi-
fiers: dynamic and ELMo embeddings, and also
this combination enriched with fastText common
crawl embeddings. Evaluation presented in table
6 shows that the best BiLSTM classifier learned
from dynamic and ELMo emdeddings performs is
very similar to the corresponding CNN. In fact, de-
spite a slightly higher f-measure the individual val-
ues of precision and recall reported for the CNN
are higher. In this experiment we do not find rel-
evant differences between the CNN classifiers and
their BiLSTM counterparts.

Embeddings Precision Recall F-Measure

dynamic + ELMo 0.8095 0.8088 0.8074
dynamic+fastText.crawl
+ ELMo

0.8093 0.8087 0.8073

Table 6: Evaluation of BiLSTM classifiers using dy-
namic and pre-trained embeddings and a pre-processed
corpus.

6 Pre-trained languages models and
fine-tuning

In this section we present the evaluation results for
the bot detection task using pre-trained language
models and fine-tuning approaches. We follow the
fine-tune procedures available for ULMFit6, Open

6https://docs.fast.ai/text.html#Fine-tuning-a-language-
model

AI GPT7, and BERT8. In all cases we use the de-
fault hyper-parameters:

• BERT base: 3 epochs, batch size of 32, and a
learning rate of 2e-5
• Open AI GPT: 3 epochs, batch size of 8, and

a learning rate of 6.25e-5
• ULMFiT: 2 epochs for the language model

fine-tuning and 3 epochs for the classifier,
batch size of 32, and a variable learning rate.

The classifiers evaluation results are presented in
table 7. Considering f-measure the best clas-
sifier is learned by Open AI GPT, followed by
BERT base model classifier. Transformer based
approaches are more up to deal with social media
messages. While Open AI GPT learns a classi-
fier with highest recall, BERT base model does it
with the highest precision. ULMFiT, on the other
hand, achieves a high precision, although lower
than the rest, and a low recall hence the low f-
measure. Both, Open AI GPT and BERT base im-
prove f-measure with respect to the best classifier
learned previously by a BiLSTM using dynamic
and ELMo embeddings (see table 6).

In addition, we evaluate how data pre-
processing affects the pre-trained language mod-
els and fine-tuning approaches. Evaluation results
presented in table 8 shows that while ULMFiT
performance improves, Open AI GPT and BERT
base worsen. Nevertheless, ULMFiT classifier is

7https://github.com/tingkai-zhang/pytorch-openai-
transformer clas

8https://github.com/google-research/bert#fine-tuning-
with-bert
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Pre-trained Language
model Precision Recall F-Measure

BERT base 0.8572 0.8213 0.8388
ULMFiT 0.8471 0.6902 0.7606

Open AI GPT 0.8567 0.8546 0.8533

Table 7: Pre-trained language models and fine-tuning
without data pre-processing

still worse than Open AI and BERT base classi-
fiers. Similarly to what we found above BERT
base has the highest precisions while Open AI
GPT the highest recall. Note that none of these
classifiers beats the Open AI GPT learned from a
non pre-processed dataset (see table 7).

Pre-trained Language
model Precision Recall F-Measure

BERT base 0.8481 0.7948 0.8206
ULMFiT 0.8096 0.7510 0.8123

Open AI GPT 0.8257 0.8243 0.8229

Table 8: Pre-trained Language models and fine tuning
with data pre-processing

7 Discussion

In this paper we use a classification task to vali-
date whether the improvement that transfer learn-
ing approaches based on fine-tuning pre-trained
language models have brought to NLP tasks can
be also achieved with social media text. The
challenge for these models is that they have been
learned from corpora like Wikipedia, News, or
Books, where text is well written, grammati-
cally correct and contextualized. On the other
hand, social media messages are short and full of
acronyms, hashtags, user mentions, urls, and mis-
pellings. Our learning objective is detecting bots
in Twitter messages since as automated agents the
generated text is potentially different than the text
sources used to pre-trained the language models.

We first present experimental results using clas-
sifiers trained with CNN and BiLSTM neural ar-
chitectures along pre-trained, contextualized and
dynamic embeddings. From the experiment re-
sults we conclude that using a concatenation of
dynamically adjusted embeddings in the training
process plus contextualized embeddings generated
by ELMo helps to learn the best classifiers. Nev-
ertheless, the models using ELMo embeddings ex-
clusively were penalized when the training data
was pre-processed. This was an unexpected result
since ELMo works at the character level allowing

it to work with unseen tokens like the tags that we
use to replace the actual tokens in the messages.

Next, we fine-tune pre-trained language models
generated with ULMFit, BERT base and Open AI
GPT, showing that the last two approaches gener-
ate classifiers that outperform the best classifiers
generated by the CNN and BiLSTM respectively,
while ULMFit performance only improves over
these classifiers when the data was pre-processed.
In addition, BERT always learns the classifier with
the highest precision while Open AI GPT learns
the classifier with highest recall.

These results open many questions that need
more research such as:

• Are unidirectional language models such as
Open AI GPT more fitted for short and infor-
mal text?
• Is the bidirectional approach used in BERT

contributing to the highest precision, while
the masked tokens are decreasing its recall?
• Why does the BiLSTM approach used in

UMLFiT perform better with pre-processed
data in contrast to the other approaches or is
this a result of the techniques used in the fine-
tuning steps (gradual unfreezing, discrimina-
tive fine-tuning, and slanted triangular learn-
ing rates) ?

We expect to discuss these questions within the
workshop to get more insights about the presented
experimental work.
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Abstract

This paper extends the task of probing sen-
tence representations for linguistic insight in
a multilingual domain. In doing so, we
make two contributions: first, we provide
datasets for multilingual probing, derived from
Wikipedia, in five languages, viz. English,
French, German, Spanish and Russian. Sec-
ond, we evaluate six sentence encoders for
each language, each trained by mapping sen-
tence representations to English sentence rep-
resentations, using sentences in a parallel cor-
pus. We discover that cross-lingually mapped
representations are often better at retaining
certain linguistic information than representa-
tions derived from English encoders trained on
natural language inference (NLI) as a down-
stream task.

1 Introduction

In recent years, there has been a considerable
amount of research into attempting to represent
contexts longer than single words with fixed-
length vectors. These representations typically
tend to focus on attempting to represent sentences,
although phrase- and paragraph-centric mecha-
nisms do exist. These have moved well beyond
relatively naı̈ve compositional methods, such as
additive and multiplicative methods (Mitchell and
Lapata, 2008), one of the earlier papers on the
subject. There have been several proposed ap-
proaches to learning these representations since,
both unsupervised and supervised. Naturally, this
has also sparked interest in evaluation methods for
sentence representations; the focus of this paper is
on probing-centric evaluations, and their extension
to a multilingual domain.

In Section 2, we provide a literature review of
prior work in the numerous domains that our pa-
per builds upon. Section 3 motivates the prin-
ciple of cross-lingual probing and describes our

goals. In Section 4, we describe our probing
tasks and relevant modifications, if any. Section 5
describes our sentence encoders, as well as the
procedure we follow for training, mapping and
probing. Section 6 describes our data and rele-
vant preprocessing methods we applied. Section 7
presents a detailed evaluation from several per-
spectives, which we discuss in Section 8. We con-
clude, as well as describe avenues for future work,
in Section 9. Our hyperparameters are described
in Appendix A.1, and further detailed results that
are not critical to the paper are tabulated in A.2.

2 Background

2.1 Sentence representation learning

Numerous methods for learning sentence repre-
sentations exist. Many of these methods are un-
supervised, and thus do not have much significant
annotation burden. Most of these methods are,
however, structured: they rely on the sentences in
training data being ordered and not randomly sam-
pled. The aptly named SkipThoughts (Kiros et al.,
2015) is a well-known earlier work, and uses re-
current encoder-decoder models to ‘decode’ sen-
tences surrounding the encoded sentence, using
the final encoder state as the encoded sentence’s
representation. Cer et al. (2018) evaluate two dif-
ferent encoders, a deep averaging network and a
transformer, on unsupervised data drawn from a
variety of web sources. Hill et al. (2016) describe
a model based on denoising auto-encoders, and a
simplified variant of SkipThoughts, that sums up
source word embeddings, that they dub (FastSent).
Another SkipThoughts variant (Logeswaran and
Lee, 2018) uses a multiple-choice objective for
contextual sentences, over the more complicated
decoder-based objective.

Several supervised approaches to building rep-
resentations also exist. An earlier work is Chara-
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gram (Wieting et al., 2016), which uses paraphrase
data and builds on character representations to ar-
rive at sentence representations. More recent pa-
pers use a diverse variety of target tasks to ground
representations, such as visual data (Kiela et al.,
2017), machine translation data (McCann et al.,
2017), and even multiple tasks, in a multi-task
learning framework (Subramanian et al., 2018).
Relevant to this paper is Conneau et al.’s (2017a)
InferSent, that uses natural language inference
(NLI) data to ground representations: they learn
these representations on the well-known SNLI
dataset (Bowman et al., 2015).

2.2 Multilingual representations

Whilst sentence representation is a thriving re-
search domain, there has been relatively less work
on multilingualism in the context of sentence rep-
resentation learning: most prior work has been fo-
cussed on multilingual word representation. For
sentence representations, an early work (Schwenk
and Douze, 2017) proposes a seq2seq-based ob-
jective, using machine learning encoders to map
source sequences to fixed-length vectors. Along
similar lines, Conneau et al. (2018b) propose us-
ing machine translation data to transfer sentence
representations pre-trained on NLI, using a mean
squared error (MSE) loss - this is the approach we
follow.

Artetxe and Schwenk (2018) present a ‘lan-
guage agnostic’ sentence representation system
learnt over machine translation; the agnosticism
refers to the joint BPE vocabulary that they
construct over all languages, giving their en-
coders no language information, whilst their de-
coders are told what language to generate. Sim-
ilarly, Lample and Conneau (2019) present pre-
trained cross-lingual models (XLM), based on
modern pretraining mechanisms; specifically, a
variant of the masked LM pretraining scheme used
in BERT (Devlin et al., 2018).

Contemporaneous with this work, Aldarmaki
and Diab (2019) present an evaluation of three
cross-lingual sentence transfer methods. Their
methods include joint cross-lingual modelling
methods that extend monolingual objectives
to cross-lingual training, representation transfer
learning methods that attempt to ‘optimise’ sen-
tence representations to be similar to parallel rep-
resentations in another language, and sentence
mapping methods based on orthogonal word em-

bedding transfer: the authors use a parallel corpus
as a ‘seed dictionary’ to fit a transformation matrix
between their source and target languages.

2.3 On evaluation

Work on evaluating sentence representations was
encouraged by the release of the SentEval
toolkit (Conneau and Kiela, 2018), which pro-
vided an easy-to-use framework that sentence rep-
resentations could be ‘plugged’ into, for rapid
downstream evaluation on numerous tasks: these
include several classification tasks, textual entail-
ment and similarity tasks, a paraphrase detec-
tion task, and caption/image retrieval tasks. Con-
neau et al. (2018a) also created a set of ‘probing
tasks’, a variant on the theme of diagnostic clas-
sification (Hupkes et al., 2017; Belinkov et al.,
2017), that would attempt to quantify precisely
what sort of linguistic information was being re-
tained by sentence representations. The authors,
whose work focussed on evaluating representa-
tions for English, provided Spearman correlations
between the performance of a particular repre-
sentation mechanism on being probed for specific
linguistic properties, and the downstream perfor-
mance on a variety of NLP tasks. Along similar
lines, and contemporaneously with this work, Liu
et al. (2019) probe three pretrained contextualised
word representation models – ELMo (Peters et al.,
2018), BERT (Devlin et al., 2018) and the OpenAI
transformer (Radford et al., 2018) – with a “suite
of sixteen diverse probing tasks”.

On a different note, Saphra and Lopez (2018)
present a CCA-based method to compare repre-
sentation learning dynamics across time and mod-
els, without explicitly requiring annotated probing
corpora. They motivate the use of SVCCA (Raghu
et al., 2017) to quantify precisely what an encoder
learns by comparing the representations it gener-
ates with representations generated by an architec-
ture trained specifically for a certain task, with the
intuition that a higher similarity between the rep-
resentations generated by the generic encoder and
the specialised representations would indicate that
the encoder is capable of encapsulating more task-
relevant information. Their method has numer-
ous advantages over traditional diagnostic classi-
fication, such as the elimination of the classifier,
which reduces the risk of an additional component
obfuscating results.

A visible limitation of the datasets provided by
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these probing tasks is that most of them were cre-
ated with the idea of evaluating representations
built for English language data. In this spirit, what
we propose is analogous to Abdou et al.’s (2018)
work on generating multilingual evaluation cor-
pora for word representations. Within the realm of
evaluating multilingual sentence representations,
Conneau et al. (2018b) describe the XNLI dataset,
a set of translations of the development and test
portions of the multi-genre MultiNLI inference
dataset (Williams et al., 2018). This, in a sense, is
an extension of a predominantly monolingual task
to the multilingual domain; the authors evaluate
sentence representations derived by mapping non-
English representations to an English representa-
tion space.

The original XNLI paper provides a baseline
representation mapping technique, based on min-
imising the mean-squared error (MSE) loss be-
tween sentence representations across a parallel
corpus. Their English language sentence repre-
sentations are derived from an encoder trained on
NLI data (Conneau et al., 2017a), and their target
language representations are randomly initialised
for a parallel sentence. While this system does
perform reasonably well, a more naive machine-
translation based approach performs better.

3 Multilingual evaluation

The focus of this paper is twofold. First, we pro-
vide five datasets for probing mapped sentence
representations, in five languages (including an
additional dataset for English), drawn from a dif-
ferent domain to Conneau et al.’s probing dataset:
specifically, from Wikipedia. Second, we probe a
selection of mapped sentence representations, in
an attempt to answer precisely what linguistic fea-
tures are retained, and to what extent, post map-
ping. The emphasis of this evaluation is therefore,
crucially, not a probing-oriented analysis of rep-
resentations trained on different languages, but an
analysis of the effects of MSE-based mapping pro-
cedures on the ability of sentence representations
to retain linguistic features. In this sense, our fo-
cus is less on the correlation between probing per-
formance and downstream performance, and more
on the relative performance of our representations
on probing tasks.

Despite having described (in Section 2) nu-
merous methods, both for learning monolingual
sentence representations, and for mapping them

cross-linguistically, we restrict our work to a
smaller subset of these. Specifically, we evaluate
six encoders, each trained in a supervised fashion
on NLI data.

Whilst our choice of languages could have been
more typologically diverse, we were restricted by
three factors:

1. the availability of a parallel corpus with En-
glish for our mapping procedure

2. the availability of a large enough Wikipedia
to allow us to extract sufficient data (for in-
stance, the Arabic Wikipedia was not large
enough to fully extract data for all our tasks)

3. the inclusion of the language in XNLI. De-
spite not being necessary, we believed it
would be interesting to have a ‘real’ down-
stream task to compare to.

4 Probing

We use most of the probing tasks described in
Conneau et al. (2018a). Due to the differences
in corpus domain, we alter some of their word-
frequency parameters. We also exclude the top
constituent (TopConst) task; we noticed that
Wikipedia tended to have far less diversity in sen-
tence structure than the original Toronto Books
corpus, due to the more encyclopaedic style of
writing. A brief description of the tasks follows,
although we urge the reader to refer to the original
paper for more detailed descriptions.

1. Sentence length: In SentLen, sentences are
divided into multiple bins based on their
length; the job of the classifier is to predict
the appropriate bin, creating a 6-way classifi-
cation task.

2. Word count: In WC, we sample sentences
that feature exactly one amongst a thousand
mid-frequency words, and train the classifier
to predict the word: this is the most ‘difficult’
task, in that it has the most possible classes.

3. Tree depth: The TreeDepth task simply asks
the representation to predict the depth of the
sentence’s syntax tree. Unlike the original
paper, we use the depth the of the dependency
tree instead of the constituency tree: this has
the added benefit of being faster to extract,
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due to the relative speed of dependency pars-
ing, as well as having better multilingual sup-
port. We also replace the authors’ sentence-
length-decorrelation procedure with a naı̈ver
one, where we sample an equal number of d-
depth trees for each sentence length bin.

4. Bigram shift: In BiShift, for half the sen-
tences in the dataset, the order of words in
a randomly sampled bigram is reversed. The
classifier learns to predict whether or not the
sentence contains a reversal.

5. Subject number: The SubjNum task asks the
classifier to predict the number of the sub-
ject of the head verb of the sentence. Only
sentences with exactly one subject (annotated
with the nsubj relation) attached to the root
verb were considered.

6. Object number: ObjNum, similar to the sub-
ject number task, was annotated with the
number of the direct object of the head verb
(annotated with the obj relation).

7. Coordination inversion: In CoordInv, two
main clauses joined by a coordinating con-
junction (annotated with the cc and conj
relations) have their orders reversed, with a
probability of one in two. Only sentences
with exactly two top-level conjuncts are con-
sidered.

8. (Semantic) odd man out: SOMO, one of the
more difficult tasks in the collection, replaces
a randomly sampled word with another word
with comparable corpus bigram frequencies,
for both bigrams formed with the preceding
and the succeeding words. We defined ‘com-
parable’ as having a log-frequency difference
not greater than 1.

9. Tense prediction: The Tense prediction asks
the classifier to predict the tense of the main
verb: the task uses a rather simple division of
tenses; two tenses, Past and Pres. Tense
information was extracted from UD morpho-
logical annotation.

5 Encoders

The NLI-oriented training approach for all our
encoders is based on InferSent (Conneau et al.,

2017a). Our first encoder is an RNN-based en-
coder (specifically, an LSTM); we use two vari-
ants of this encoder, one that uses max-pooling
over bidirectional RNN states, and another that
uses the last recurrent state. Our second encoder
is a self-attention based encoder Lin et al. (2017),
with the same max-pool/last-state variants. Fi-
nally, we include a convolutional sentence repre-
sentation model inspired by Gan et al. (2016); this
model has an order of magnitude fewer parame-
ters than the RNN- and attention-based variants.
A variant of this CNN-based encoder has the max-
imum pooling replaced with average pooling.

5.1 Representation learning
We train all our encoders to represent sentences
using the same NLI-based objective followed
by Conneau et al. (2017a). More precisely, we first
convert the word indices for both our premise and
our hypothesis into dense word representations
using pretrained fastText word embeddings (Bo-
janowski et al., 2016). These representations are
then passed to our encoder of choice, which re-
turns two fixed-length vectors: u for the premise,
and v for the hypothesis. These vectors are com-
bined and concatenated, as [u, v, u ∗ v, | u − v |],
and then passed through a classifier with a softmax
layer that outputs a probability distribution over
the three NLI labels.

5.2 Mapping
Our procedure for mapping our encoders cross-
linguistically broadly follows the principled map-
ping approach described in Conneau et al.
(2018b). The procedure begins by mapping our
word representations to the same vector space.
Unlike the original paper, we use the supervised
variant of VecMap (Artetxe et al., 2016) for rep-
resentation mapping; however, we use seed dictio-
naries described in Conneau et al. (2017b). Hav-
ing mapped our word representations, we proceed
to map our sentence representations. To do so,
we first build an English-language encoder, us-
ing (frozen) word representations and (frozen) en-
coder weights obtained in Section 5.1. We then
build a target language encoder, using word em-
beddings mapped to the same space as the English
embeddings. The sentence encoder itself is ini-
tialised with random parameters.

We then encode the source and target sentences
in an en-trg machine translation corpus, where trg
is our target language. Our English encoder re-
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Figure 1: (a) an English-language encoder is trained on NLI data; (b) parallel sentences are encoded in English and
the target language, and the MSE loss between them is minimised; (c) the mapped target encoders are used down-
stream in probing. Greyed-out blocks represent ‘frozen’ components that do not further adjust their parameters.

turns a ‘meaningful’ representation: recall that the
encoder has weights trained on NLI data. We then
use a mean-square error loss function to reduce the
distance between our target-language representa-
tion and the English representation; the system
then backpropagates through the target language
encoder to obtain better parameters.

Our MSE loss function, similar to Conneau
et al.’s function, attempts to minimise the dis-
tance between representations of parallel sen-
tences, whilst simultaneously maximising the dis-
tance between random sentences sampled from ei-
ther language in the pair. Mathematically, the
alignment loss is given by:

Lalign = ||x−y||2−λ(||xc−y||2 + ||x−yc||2)

where λ is a hyperparameter.
We evaluate our mapped encoder on the relevant

validation data section from the XNLI corpus per
epoch, and terminate the mapping procedure when
our validation accuracy does not improve for two
consecutive epochs.

5.3 Multilingual probing

Having obtained our mapped sentence representa-
tion encoder, we proceed to plug the encoder into
our probing architecture downstream, and evaluate
classifier performance.

First, we load our mapped word representations
for the language that we intend to analyse. We
use these word representations to build sentence

representations, using the encoder architecture of
choice. We then add a simple multi-layer per-
ceptron (MLP) that learns to predict the appro-
priate label for each task: the MLP consists of a
dense layer, a non-linearity (we use the sigmoid
function), and another dense layer that we soft-
max over to arrive at per-class probabilities. Dur-
ing training, we keep the encoder’s parameters
fixed. Mathematically, therefore, given an encoder
f with parameters θ, and word representations wk

for each word k:

s = f(w0,w1, ...,wn; θ)

z = MLP(s)

y = softmax(z)

where ‘MLP’ refers to a multi-layer perceptron
with one sigmoid hidden layer.

Finally, we evaluate our representations on the
relevant test portion. Whilst Conneau et al. used
grid search to determine the best hyperparameters
for each probing task, we did not do so, due to both
time constraints, and in an attempt to ensure clas-
sifier uniformity across languages. We describe
our probing results in Section 7.

6 Data

6.1 Probing data
We build our probing datasets using the relevant
language’s Wikipedia dump as a corpus. Specif-
ically, we use Wikipedia dumps (dated 2019-02-
01), which we process using the WikiExtractor
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Figure 2: Probing accuracies for our six encoders on Conneau et al.’s dataset (orig), compared to our Wikipedia-
derived dataset (eng)

utility1. We use the Punkt tokeniser (Kiss and
Strunk, 2006) to segment our Wikipedia dumps
into discrete sentences. For Russian, which lacked
a Punkt tokenisation model, we used the UD-
Pipe (Straka and Straková, 2017) toolkit to per-
form segmentation.

Having segmented our data, we used the
Moses (Koehn et al., 2007) tokeniser for the ap-
propriate language, falling back to English to-
kenisation when unavailable: this was similar to
XNLI’s tokenisation schema, and therefore neces-
sary for appropriate evaluation on XNLI.

Next, we obtained dependency parses for our
sentences, again using the UDPipe toolkit’s pre-
trained models, trained on Universal Dependen-
cies treebanks (Nivre et al., 2015). We then pro-
cessed these dependency parsed corpora to ex-
tract the appropriate sentences; each task had
120k extracted sentences, divided into train-
ing/validation/test splits with 100k, 10k and 10k
sentences respectively.

1https://github.com/attardi/
wikiextractor/

6.2 Mapping data

For mapping our sentence representations, we
were restricted by the availability of large paral-
lel corpora we could use for our mapping proce-
dure. We used two such corpora: the Europarl
corpus (Koehn, 2005), a multilingual collection of
European Parliament proceedings, and the Mul-
tiUN corpus (Tiedemann, 2012), a collection of
translated documents from the United Nations.
We used Europarl for the official EU languages we
analysed: German and Spanish. For Russian, we
used MultiUN. We used both corpora for French,
to attempt to analyse what, if any, effect the map-
ping corpus would have. We also truncated our
MultiUN cororpora to 2 million sentences, to keep
the corpus size roughly equivalent to Europarl, and
also due to time and resource constraints: map-
ping representations on the complete 10 million
sentence corpus would have required significant
amounts of time.

Both our corpora were pre-segmented: we fol-
lowed the same Moses-based tokenisation scheme
that we did for our probing corpora, falling back
to English for languages that lacked appropriate
tokeniser models.
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7 Evaluation

As a preface to this section, we reiterate that the
goal of this work was not to attempt to reach state-
of-the-art on the tasks we describe; our goal was
primarily to study the effect of transfer on sentence
representations.

Our first step during evaluation, therefore, was
to probe all our encoders using Conneau et al.’s
original probing corpus, and compare these results
to our English-language results on our Wikipedia-
generated corpus. We present these results in the
form of a heatmap in Figure 2.

Similarities between results on our corpora are
instantly visible; these also appear to hold across
encoders. Tasks with minor visible differences in-
clude WC, the most ‘difficult’ classification task
(1k classes), and TreeDepth, where we use de-
pendency tree depth instead of constituency tree
depth, as well as a different sampling mechanism.

Next, we present Spearman correlations be-
tween the performance of our encoders on prob-
ing tasks and on the only ‘true’ cross-lingual
downstream task we evaluated our systems on:
cross-lingual natural language inference, via the
XNLI (Conneau et al., 2018b) corpus. A caveat
here is that we make no claims about the statisti-
cal significance of these results; given just six data
points per language per task, our p-values tend
to be well below acceptable for statistical signif-
icance. We refer the reader to Conneau et al.’s
original probing work, where despite having re-
sults for 30 encoders, correlations between many
downstream and probing tasks were not statisti-

Figure 3: Spearman correlation between probing per-
formance and XNLI; results are not statistically signif-
icant.

cally significant. Our correlations are presented,
again in the form of a heatmap, in Figure 3. Our
absolute results on XNLI are presented in the ap-
pendix. These are not a focus for this work: we
did not attempt to obtain state-of-the-art, nor, in-
deed, perform any sort of hyperparameter opti-
misation to get the ‘best’ possible results. Given
these caveats, we draw the reader’s attention to
the fact that the overwhelming majority of corre-
lations are negative.

Finally, and most importantly, we measure
downstream performance on probing tasks for all
our cross-lingually mapped encoders. For visual-
isation relevant to our goals, and for brevity, we
present these results, in Figure 4, as a heatmap
of probing results relative to (our) English prob-
ing results; a full table with numeric results is pre-
sented in Appendix A.2.

8 Discussion

Our cross-lingual results display some very inter-
esting characteristics, that we enumerate and at-
tempt to explain in this section. These results can
be analysed along three dimensions: that of lan-
guage, encoder mechanism, and the probing task
itself.

8.1 Language

Whilst our results are broadly similar across lan-
guages, Russian appears to be an exception to this:
our probing performance for most tasks is con-
siderably worse when transferred to Russian than
other languages. Transfer corpus does not appear
to be a factor in this case: most of our encoders
perform very similarly on both the Europarl and
the UN variants of our transferred French repre-
sentations. These are interesting preliminary re-
sults, that would require further analysis: as we
mentioned in an earlier section, we were rather
limited in our choice of languages, however, we
foresee a possible extension to this work includ-
ing more typologically diverse languages. One
possible explanation for the relatively poor results
on Russian is the nature of the word embeddings
themselves: whilst we did not use the same meth-
ods, we did map our embeddings to the same
space using the same dictionaries as Conneau et al.
(2017b). The results they describe for word trans-
lation retrieval are considerably poorer for English
and Russian than they are for English and Spanish,
French or German.
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Figure 4: Probing results for each encoder relative to results on English. The second horizontal line indicates a
switch in corpora. A white square indicates a value of 1, i.e. a parity in performance

8.2 Probing task

An immediate surprising takeaway from our re-
sults is the (perhaps counter-intuitive) fact that
transferred representations are not necessarily
worse at probing tasks than trained representations
are. To help with the analysis of Figure 4, we
present Table 1, where several trends are easily
visible. In particular, a task that appears to stand
out is SentLen, with transferred encoders display-
ing considerably improved performance in five out
of six cases.

Apart from sentence length, both number pre-
diction tasks – SubjNum and ObjNum – show
noticeable improvements when transferred to a
non-English language. The fact that this improve-
ment is consistent across both number tasks likely
also rules out mere coincidence. We hypothesise
that the explanation for these three tasks in par-
ticular showing improvements on transfer lies in
the specific nature of the mapping task. While it
is plausible that this is due to these specific phe-
nomena being less critical to NLI (on which our
English encoders were trained) than to the attempt
made by our target encoders to emulate these En-
glish representations, it is not immediately clear
how these encoders are capable of exceeding the

predictive capabilities of the encoders they are at-
tempting to emulate.

Another interesting observation is the variance
in performance for the word content (WC) task,
which also happens to be the ‘hardest’ task with
the most output classes. We further note that, re-
grettably, none of our encoders were able to learn
anything on SOMO.

Task µ σ

BiShift 0.558 0.013
CoordInv 0.656 0.111
ObjNum 0.605 0.073
SOMO 0.505 0.011
Tense 0.708 0.124

SentLen 0.523 0.259
SubjNum 0.643 0.099

WC 0.152 0.115
TreeDepth 0.330 0.082

Table 1: Mean and standard deviations for the absolute
performance for each probing task, across languages
and encoders
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8.3 Encoder
All our encoders do appear to display very dis-
tinctive probing patterns, with variants of each en-
coder being more similar to each other than to dif-
ferent encoders. We enumerate some of the key
observations:

1. Both our CNNs appear to perform worse
than attentive or recurrent mechanisms; this
is, however, perfectly understandable, as our
CNN-based models had an order of mag-
nitude fewer parameters than the recurrent
ones. The choice of pooling mechanism,
however, appears to have a more significant
effect on convolutional encoders than on oth-
ers.

2. Attentive encoders appear to be better at
probing in general, whilst recurrent encoders
show extremely strong performance on cer-
tain tasks, such as sentence length.

3. The max-pooled CNN is the only encoder
that shows considerably worse performance
on sentence length. This is also true for En-
glish, as is visible from Figure 2. We hy-
pothesise that the fixed-length filters used in
convolutional encoders do not store much in-
formation about sentence length, as they only
observe chunks of the sentence. A max-
pooling mechanism further compounds this
inability to store length by eliminating pos-
sible compositional length information that
mean-pooling does ignore.

9 Conclusions

Our analysis reveals several interesting patterns
that appear to hold during cross-lingual transfer.
Several of our probing tasks give us clearer insight
into the sentence representations that we have gen-
erated by cross-lingual mapping, which is much
needed: the principle of learning a sentence repre-
sentation in parallel, combined with the fact that
these representations actually appear to ‘work’
downstream, raises a lot of questions both about
what information sentence representations hold,
but more interestingly, in a cross-lingual context,
about what mutual information a sentence and its
translation contain.

We open-source both our training code and the
probing datasets (that we dub X-PROBE)2 that we

2https://github.com/ltgoslo/xprobe

generated in the hope that the domain of cross-
lingual analysis sees further work. There are sev-
eral avenues for expansion, the most obvious be-
ing a probing-oriented analysis of more complex
contextualisers, such as BERT, as well as of mas-
sively multilingual or language agnostic model.

We also hypothesise that more can be said about
probing with a different selection of probing tasks;
indeed, Liu et al. (2019) do provide a set of tasks
that do not overlap with the tasks we have used.
Selecting probing tasks that might tell allow us
to better interpret cross-lingual modelling is an-
other logical path one might follow. On a simi-
lar theme, an interesting research direction also in-
volve adaptations of simple probing tasks describ-
ing linguistic phenomena to specialised architec-
tures, for better comparison using SVCCA-style
analyses (Saphra and Lopez, 2018).

Finally, we would also like to expand these
datasets to more typologically diverse languages.
A challenge in doing so is the availability of cor-
pora that are large enough; none of our probing
tasks have any sentences in common, which, given
the size of each task’s corpus, requires a fairly
large corpus for extraction. However, this process
could possibly be simplified massively by remov-
ing this mutual exclusivity requirement, which
would vastly simplify the process.
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Mititelu, Yusuke Miyao, Simonetta Montemagni,
Shunsuke Mori, Hanna Nurmi, Petya Osenova, Lilja
Øvrelid, Elena Pascual, Marco Passarotti, Cenel-
Augusto Perez, Slav Petrov, Jussi Piitulainen, Bar-
bara Plank, Martin Popel, Prokopis Prokopidis,
Sampo Pyysalo, Loganathan Ramasamy, Rudolf
Rosa, Shadi Saleh, Sebastian Schuster, Wolfgang
Seeker, Mojgan Seraji, Natalia Silveira, Maria Simi,
Radu Simionescu, Katalin Simkó, Kiril Simov,
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Zdeněk Žabokrtský, Daniel Zeman, and Hanzhi
Zhu. 2015. Universal dependencies 1.2. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
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A Appendices

A.1 Hyperparameters

Component Layer Value

Global Embeddings 300 (FastText)
Batch size 10
Optimiser Adam

Learning rate 10−3

RNN biLSTM dim 512
biLSTM layers 2

Dropout 10%

CNN Filter sizes (3, 4, 5)
Padding (1, 2, 2)
Channels 800

Projection dim 1024

Attention biLSTM dim 512
biLSTM layers 2

Dropout 10%
MLP dim 150
Activation tanh
Attn. heads 60

Mapper λ 0.25

Probe classifier Hidden dim 150
Activation σ

Table 2: Hyperparameters, divided by the ‘component’
that each layer belongs to. Note that biRNN dims are
per direction.

A.2 Additional results

Encoder Language
English German Spanish French French (UN) Russian

RNN (maxpool) 0.71 0.66 0.68 0.68 0.65 0.61
RNN (last) 0.66 0.63 0.65 0.65 0.63 0.59

CNN (maxpool) 0.51 0.39 0.41 0.36 0.44 0.43
CNN (avg. pool) 0.51 0.50 0.51 0.50 0.50 0.48

Attn. (maxpool) 0.71 0.64 0.67 0.67 0.67 0.60
Attn. (last) 0.70 0.65 0.69 0.69 0.66 0.62

Table 3: Language-specific results on relevant XNLI
splits for each encoder
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English BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth

Attention (maxpool) 0.57 0.73 0.65 0.5 0.82 0.7 0.7 0.27 0.41
Attention (last) 0.56 0.74 0.64 0.49 0.8 0.74 0.7 0.22 0.4
RNN (maxpool) 0.54 0.74 0.65 0.5 0.82 0.51 0.73 0.3 0.42

RNN (last) 0.55 0.73 0.62 0.5 0.74 0.38 0.68 0.11 0.34
CNN (maxpool) 0.55 0.55 0.53 0.51 0.57 0.22 0.52 0.01 0.26
CNN (avg. pool) 0.55 0.51 0.54 0.5 0.54 0.21 0.56 0.02 0.24

German BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.56 0.76 0.63 0.5 0.8 0.85 0.66 0.24 0.39

Attention (last) 0.56 0.79 0.63 0.52 0.81 0.87 0.68 0.25 0.39
RNN (maxpool) 0.57 0.8 0.64 0.51 0.82 0.68 0.69 0.28 0.37

RNN (last) 0.54 0.74 0.61 0.52 0.71 0.44 0.63 0.11 0.31
CNN (maxpool) 0.54 0.51 0.51 0.5 0.55 0.17 0.53 0.0 0.21
CNN (avg. pool) 0.54 0.5 0.53 0.5 0.57 0.21 0.54 0.01 0.23

Spanish BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.57 0.72 0.69 0.51 0.85 0.82 0.73 0.25 0.44

Attention (last) 0.58 0.71 0.7 0.51 0.84 0.85 0.74 0.25 0.45
RNN (maxpool) 0.55 0.75 0.69 0.53 0.85 0.67 0.76 0.28 0.44

RNN (last) 0.55 0.7 0.65 0.52 0.75 0.54 0.68 0.12 0.36
CNN (maxpool) 0.55 0.5 0.51 0.49 0.52 0.18 0.51 0.0 0.19
CNN (avg. pool) 0.55 0.5 0.54 0.5 0.6 0.23 0.51 0.01 0.26

French BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.56 0.76 0.7 0.5 0.85 0.84 0.76 0.27 0.42

Attention (last) 0.58 0.76 0.71 0.5 0.84 0.86 0.79 0.26 0.41
RNN (maxpool) 0.53 0.78 0.7 0.5 0.84 0.61 0.8 0.31 0.4

RNN (last) 0.55 0.72 0.65 0.49 0.71 0.47 0.71 0.12 0.34
CNN (maxpool) 0.55 0.52 0.49 0.51 0.5 0.17 0.51 0.0 0.2
CNN (avg. pool) 0.55 0.51 0.52 0.5 0.54 0.23 0.54 0.01 0.23

French (UN) BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.57 0.74 0.7 0.5 0.82 0.83 0.76 0.27 0.42

Attention (last) 0.57 0.76 0.69 0.5 0.83 0.83 0.78 0.26 0.41
RNN (maxpool) 0.56 0.78 0.7 0.5 0.83 0.62 0.79 0.3 0.39

RNN (last) 0.55 0.73 0.65 0.5 0.68 0.47 0.71 0.13 0.34
CNN (maxpool) 0.55 0.51 0.51 0.49 0.52 0.2 0.52 0.0 0.21
CNN (avg. pool) 0.55 0.52 0.52 0.5 0.52 0.25 0.53 0.02 0.24

Russian BiShift CoordInv ObjNum SOMO Tense SentLen SubjNum WC TreeDepth
Attention (maxpool) 0.58 0.66 0.56 0.52 0.74 0.82 0.6 0.2 0.35

Attention (last) 0.58 0.66 0.57 0.53 0.76 0.84 0.6 0.2 0.35
RNN (maxpool) 0.57 0.65 0.57 0.51 0.76 0.65 0.61 0.22 0.33

RNN (last) 0.57 0.57 0.56 0.52 0.68 0.45 0.59 0.11 0.3
CNN (maxpool) 0.57 0.51 0.5 0.5 0.55 0.17 0.51 0.0 0.21
CNN (avg. pool) 0.57 0.51 0.52 0.52 0.56 0.26 0.53 0.01 0.24

Table 4: Complete set of absolute results per probing task, per encoder, per language. For English, these numbers
are for unmapped, NLI-based encoders; for all other languages, these are post-mapping numbers
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Abstract

How can we represent hierarchical informa-
tion present in large type inventories for en-
tity typing? We study the ability of hyperbolic
embeddings to capture hierarchical relations
between mentions in context and their target
types in a shared vector space. We evaluate
on two datasets and investigate two different
techniques for creating a large hierarchical en-
tity type inventory: from an expert-generated
ontology and by automatically mining type
co-occurrences. We find that the hyperbolic
model yields improvements over its Euclidean
counterpart in some, but not all cases. Our
analysis suggests that the adequacy of this ge-
ometry depends on the granularity of the type
inventory and the way hierarchical relations
are inferred.1

1 Introduction

Entity typing classifies textual mentions of enti-
ties according to their semantic class. The task
has progressed from finding company names (Rau,
1991), to recognizing coarse classes (person, lo-
cation, organization, and other, Tjong Kim Sang
and De Meulder, 2003), to fine-grained invento-
ries of about one hundred types, with finer-grained
types proving beneficial in applications such as
relation extraction (Yaghoobzadeh et al., 2017)
and question answering (Yavuz et al., 2016). The
trend towards larger inventories has culminated in
ultra-fine and open entity typing with thousands of
classes (Choi et al., 2018; Zhou et al., 2018).

However, large type inventories pose a chal-
lenge for the common approach of casting en-
tity typing as a multi-label classification task (Yo-
gatama et al., 2015; Shimaoka et al., 2016), since
exploiting inter-type correlations becomes more

1Code available at: https://github.com/
nlpAThits/figet-hyperbolic-space

Sentence Annotation
...when the
president said...

politician,
president

...during the
negotiation, he...

politician,
diplomat

...after the last
meeting, she...

politician,
president

...the president
argued...

politician,
president

Figure 1: Examples of annotations and hierarchical
type inventory with co-occurrence frequencies.

difficult as the number of types increases. A nat-
ural solution for dealing with a large number of
types is to organize them in hierarchy ranging
from general, coarse types such as “person” near
the top, to more specific, fine types such as “politi-
cian” in the middle, to even more specific, ultra-
fine entity types such as “diplomat” at the bottom
(see Figure 1). By virtue of such a hierarchy, a
model learning about diplomats will be able to
transfer this knowledge to related entities such as
politicians.

Prior work integrated hierarchical entity type in-
formation by formulating a hierarchy-aware loss
(Ren et al., 2016; Murty et al., 2018; Xu and Bar-
bosa, 2018) or by representing words and types
in a joint Euclidean embedding space (Shimaoka
et al., 2017; Abhishek et al., 2017). Noting that
it is impossible to embed arbitrary hierarchies in
Euclidean space, Nickel and Kiela (2017) propose
hyperbolic space as an alternative and show that
hyperbolic embeddings accurately encode hierar-
chical information. Intuitively (and as explained
in more detail in Section 2), this is because dis-
tances in hyperbolic space grow exponentially as
one moves away from the origin, just like the num-
ber of elements in a hierarchy grows exponentially
with its depth.

While the intrinsic advantages of hyperbolic
embeddings are well-established, their usefulness
in downstream tasks is, so far, less clear. We be-
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(a) Euclidean Space. (b) Hyperbolic Space.

Figure 2: Type inventory of the Ultra-Fine dataset
aligned to the WordNet noun hierarchy and projected
on two dimensions in different spaces.

lieve this is due to two difficulties: First, incorpo-
rating hyperbolic embeddings into a neural model
is non-trivial since training involves optimization
in hyperbolic space. Second, it is often not clear
what the best hierarchy for the task at hand is.

In this work, we address both of these issues.
Using ultra-fine grained entity typing (Choi et al.,
2018) as a test bed, we first show how to incor-
porate hyperbolic embeddings into a neural model
(Section 3). Then, we examine the impact of the
hierarchy, comparing hyperbolic embeddings of
an expert-generated ontology to those of a large,
automatically-generated one (Section 4). As our
experiments on two different datasets show (Sec-
tion 5), hyperbolic embeddings improve entity
typing in some but not all cases, suggesting that
their usefulness depends both on the type inven-
tory and its hierarchy. In summary, we make the
following contributions:

1. We develop a fine-grained entity typing
model that embeds both entity types and en-
tity mentions in hyperbolic space.

2. We compare two different entity type hierar-
chies, one created by experts (WordNet) and
one generated automatically, and find that
their adequacy depends on the dataset.

3. We study the impact of replacing the Eu-
clidean geometry with its hyperbolic counter-
part in an entity typing model, finding that the
improvements of the hyperbolic model are
noticeable on ultra-fine types.

2 Background: Poincaré Embeddings

Hyperbolic geometry studies non-Euclidean
spaces with constant negative curvature. Two-
dimensional hyperbolic space can be modelled as
the open unit disk, the so-called Poincaré disk, in
which the unit circle represents infinity, i.e., as a

point approaches infinity in hyperbolic space, its
norm approaches one in the Poincaré disk model.
In the general n-dimensional case, the disk model
becomes the Poincaré ball (Chamberlain et al.,
2017) Bn = {x ∈ Rn | ‖x‖ < 1}, where ‖ · ‖
denotes the Euclidean norm. In the Poincaré
model the distance between two points u, v ∈ Bn
is given by:

dH(u, v) = arcosh(1 + 2
‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2) ) (1)

If we consider the origin O and two points, x
and y, moving towards the outside of the disk,
i.e. ‖x‖, ‖y‖ → 1, the distance dH(x, y) tends
to dH(x,O) + dH(O, y). That is, the path be-
tween x and y is converges to a path through the
origin. This behaviour can be seen as the contin-
uous analogue to a (discrete) tree-like hierarchical
structure, where the shortest path between two sib-
ling nodes goes through their common ancestor.

As an alternative intuition, note that the hyper-
bolic distance between points grows exponentially
as points move away from the center. This mirrors
the exponential growth of the number of nodes in
trees with increasing depths, thus making hyper-
bolic space a natural fit for representing trees and
hence hierarchies (Krioukov et al., 2010; Nickel
and Kiela, 2017).

By embedding hierarchies in the Poincaré ball
so that items near the top of the hierarchy are
placed near the origin and lower items near infinity
(intuitively, embedding the “vertical” structure),
and so that items sharing a parent in the hierar-
chy are close to each other (embedding the “hori-
zontal” structure), we obtain Poincaré embeddings
(Nickel and Kiela, 2017). More formally, this
means that embedding norm represents depth in
the hierarchy, and distance between embeddings
the similarity of the respective items.

Figure 2 shows the results of embedding the
WordNet noun hierarchy in two-dimensional Eu-
clidean space (left) and the Poincaré disk (right).
In the hyperbolic model, the types tend to be lo-
cated near the boundary of the disk. In this region
the space grows exponentially, which allows re-
lated types to be placed near one another and far
from unrelated ones. The actual distance in this
model is not the one visualized in the figure but
the one given by Equation 1.
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(a) Projection layers. (b) Incorporation of hierarchical information.

Figure 3: Overview of the proposed model to predict types of a mention within its context.

3 Entity Typing in Hyperbolic Space

3.1 Task Definition

The task we consider is, given a context sentence
c containing an entity mention m, predict the cor-
rect type labels tm that describe m from a type in-
ventory T , which includes more than 10,000 types
(Choi et al., 2018). The mentionm can be a named
entity, a nominal, or a pronoun. The ground-truth
type set tm may contain multiple types, making
the task a multi-label classification problem.

3.2 Objective

We aim to analyze the effects of hyperbolic and
Euclidean spaces when modeling hierarchical in-
formation present in the type inventory, for the
task of fine-grained entity typing. Since hyper-
bolic geometry is naturally equipped to model hi-
erarchical structures, we hypothesize that this en-
hanced representation will result in superior per-
formance. With the goal of examining the rela-
tion between the metric space and the hierarchy,
we propose a regression model. We learn a func-
tion that maps feature representations of a mention
and its context onto a vector space such that the in-
stances are embedded closer to their target types.

The ground-truth type set contains a varying
number of types per instance. In our regression
setup, however, we aim to predict a fixed amount
of labels for all the instances. This imposes strong
upper bounds to the performance of our proposed
model. Nonetheless, as the strict accuracy of state-
of-the-art methods for the Ultra-Fine dataset is be-
low 40% (Choi et al., 2018; Xiong et al., 2019), the
evaluation we perform is still informative in qual-
itative terms, and enables us to gain better intu-

itions with regard to embedding hierarchical struc-
tures in different metric spaces.

3.3 Method

Given the encoded feature representations of a
mention m and its context c, noted as e(m, c) ∈
Rn′

our goal is to learn a mapping function f :
Rn′ → Sn, where Sn is the target vector space.
We intend to approximate embeddings of the type
labels tm, previously projected into the space.
Subsequently, we perform a search of the nearest
type embeddings of the embedded representation
in order to assign the categorical label correspond-
ing to the mention within that context. Figure 3
presents an overview of the model.

The label distribution on the dataset is diverse
and fine-grained. Each instances is annotated with
three levels of granularity, namely coarse, fine and
ultra-fine, and on the development and test set
there are, on average, five labels per item. This
poses a challenging problem for learning and pre-
dicting with only one projection. As a solution,
we propose three different projection functions,
fcoarse, ffine, and fultra, each one of them fine-
tuned to predict labels of a specific granularity.

We hypothesize that the complexity of the pro-
jection increases as the granularity becomes finer,
given that the target label space per granularity in-
creases. Inspired by Sanh et al. (2019), we arrange
the three projections in a hierarchical manner that
reflects these difficulties. The coarse projection
task is set at the bottom layer of the model and
more complex (finer) interactions at higher layers.
With the projected embedding of each layer, we
aim to introduce an inductive bias in the next pro-
jection that will help to guide it into the correct
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region of the space. Nevertheless, we use shortcut
connections so that top layers can have access to
the encoder layer representation.

3.4 Mention and Context Representations
To encode the context c containing the mentionm,
we apply the encoder schema of Choi et al. (2018)
based on Shimaoka et al. (2016). We replace the
location embedding of the original encoder with a
word position embedding pi to reflect relative dis-
tances between the i-th word and the entity men-
tion. This modification induces a bias on the atten-
tion layer to focus less on the mention and more on
the context. Finally we apply a standard Bi-LSTM
and a self-attentive encoder (McCann et al., 2017)
on top to get the context representation C ∈ Rdc .

For the mention representation we derive fea-
tures from a character-level CNN, concatenate
them with the Glove word embeddings (Penning-
ton et al., 2014) of the mention, and combine them
with a similar self-attentive encoder. The mention
representation is denoted as M ∈ Rdm . The final
representation is achieved by the concatenation of
mention and context [M ;C] ∈ Rdm+dc .

3.5 Projecting into the Ball
To learn a projection function that embeds our
feature representation in the target space, we ap-
ply a variation of the re-parameterization tech-
nique introduced in Dhingra et al. (2018). The re-
parameterization involves computing a direction
vector r and a norm magnitude λ from e(m, c) as
follows:

r = ϕdir(e(m, c)), r =
r

‖r‖ ,

λ = ϕnorm(e(m, c)), λ = σ(λ),

(2)

where ϕdir : Rn′ → Rn, ϕnorm : Rn′ → R
can be arbitrary functions, whose parameters will
be optimized during training, and σ is the sig-
moid function that ensures the resulting norm λ ∈
(0, 1). The re-parameterized embedding is defined
as v = λr, which lies in Sn.

By making use of this simple technique, the
embeddings are guaranteed to lie in the Poincaré
ball. This avoids the need to correct the gradient
or the utilization of Riemannian-SGD (Bonnabel,
2011). Instead, it allows the use of any opti-
mization method in deep learning, such as Adam
(Kingma and Ba, 2014).

We parameterize the direction function ϕdir :
Rdm+dc → Rn as a multi-layer perceptron (MLP)

with a single hidden layer, using rectified linear
units (ReLU) as nonlinearity, and dropout. We do
not apply the ReLU function after the output layer
in order to allow negative values as components
of the direction vector. For the norm magnitude
function ϕnorm : Rdm+dc → R we use a single
linear layer.

3.6 Optimization of the Model
We aim to find projection functions fi that embed
the instance representations closer to the respec-
tive target types, in a given vector space Sn. As
target space Sn we use the Poincaré Ball Bn and
compare it with the Euclidean unit ball Rn. Both
Bn and Rn are metric spaces, therefore they are
equipped with a distance function, namely the hy-
perbolic distance dH defined in Equation 1, and
the Euclidean distance dE respectively, which we
intend to minimize. Moreover, since the Poincaré
Model is a conformal model of the hyperbolic
space, i.e. the angles between Euclidean and hy-
perbolic vectors are equal, the cosine distance dcos
can be used, as well.

We propose to minimize a combination of the
distance defined by each metric space and the co-
sine distance to approximate the embeddings. Al-
though formally this is not a distance metric since
it does not satisfy the Cauchy-Schwarz inequality,
it provides a very strong signal to approximate the
target embeddings accounting for the main con-
cepts modeled in the representation: relatedness,
captured via the distance and orientation in the
space, and generality, via the norm of the embed-
dings.

To mitigate the instability in the derivative of
the hyperbolic distance2 we follow the approach
proposed in Sala et al. (2018) and minimize the
square of the distance, which does have a continu-
ous derivative in Bn. Thus, in the Poincaré Model
we minimize the distance for two points u, v ∈ Bn
defined as:

dB(u, v) = α(dH(u, v))2 + βdcos(u, v) (3)

Whereas in the Euclidean space, for x, y ∈ Rn

we minimize:

dR(x, y) = αdE(x, y) + βdcos(x, y) (4)

The hyperparameters α and β are added to com-
pensate the bounded image of the cosine distance
function in [0, 1].

2limy→x ∂x|dH(x, y)| → ∞ ∀x ∈ Bn
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Split Coarse Fine Ultra-fine
Train 2,416,593 4,146,143 3,997,318
Dev 1,918 1,289 7,594
Test 1,904 1,318 7,511

Table 1: Type instances in the dataset grouped by split
and granularity.

4 Hierarchical Type Inventories

In this section, we investigate two methods for de-
riving a hierarchical structure for a given type in-
ventory. First, we introduce the datasets on which
we perform our study since we exploit some of
their characteristics to construct a hierarchy.

4.1 Data
We focus our analysis on the the Ultra-Fine en-
tity typing dataset introduced in Choi et al. (2018).
Its design goals were to increase the diversity
and coverage entity type annotations. It con-
tains 10,331 target types defined as free-form noun
phrases and divided in three levels of granularity:
coarse, fine and ultra-fine. The data consist of
6,000 crowdsourced examples and approximately
6M training samples in the open-source version3,
automatically extracted with distant supervision,
by entity linking and nominal head word extrac-
tion. Our evaluation is done on the original crowd-
sourced dev/test splits.

To gain a better understanding of the proposed
model under different geometries, we also exper-
iment on the OntoNotes dataset (Gillick et al.,
2014) as it is a standard benchmark for entity typ-
ing.

4.2 Deriving the Hierarchies
The two methods we analyze to derive a hierarchi-
cal structure from the type inventory are the fol-
lowing.
Knowledge base alignment: Hierarchical infor-
mation can be provided explicitly, by aligning the
type labels to a knowledge base schema. In this
case the types follow the tree-like structure of the
ontology curated by experts. On the Ultra-Fine
dataset, the type vocabulary T (i.e. noun phrases)
is extracted from WordNet (Miller, 1992). Nouns
in WordNet are organized into a deep hierarchy,
defined by hypernym or “IS A” relationships. By
aligning the type labels to the hypernym structure
existing in WordNet, we obtain a type hierarchy.
In this case, all paths lead to the root type entity.

3Choi et al. (2018) uses the licensed Gigaword to build
part of the dataset resulting in about 25.2M training samples.

In the OntoNotes dataset the annotations follow a
pre-established, much smaller, hierarchical taxon-
omy based on “IS A” relations, as well.
Type co-occurrences: Although in practical sce-
narios hierarchical information may not always be
available, the distribution of types has an implicit
hierarchy that can be inferred automatically. If we
model the ground-truth labels as nodes of a graph,
its adjacency matrix can be drawn and weighted by
considering the co-occurrences on each instance.
That is, if t1 and t2 are annotated as true types for
a training instance, we add an edge between both
types. To weigh the edge we explore two vari-
ants: the frequency of observed instances where
this co-relation holds, and the pointwise mutual
information (pmi), as a measure of the associa-
tion between the two types4. By mining type co-
occurrences present in the dataset as an affinity
score, the hierarchy can be inferred. This method
alleviates the need for a type inventory explicitly
aligned to an ontology or pre-defined label corre-
lations.

To embed the target type representations into
the different metric spaces we make use of the li-
brary Hype5 (Nickel and Kiela, 2018). This library
allows us to embed graphs into low-dimensional
continuous spaces with different metrics, such as
hyperbolic or Euclidean, ensuring that related ob-
jects are closer to each other in the space. The
learned embeddings capture notions of both sim-
ilarity, through the relative distance among each
other, and hierarchy, through the distance to the
origin, i.e. the norm. The projection of the hierar-
chy derived from WordNet is depicted in Figure 2.

5 Experiments

We perform experiments on the Ultra-Fine (Choi
et al., 2018) and OntoNotes (Gillick et al., 2014)
datasets to evaluate which kind of hierarchical in-
formation is better suited for entity typing, and un-
der which geometry the hierarchy can be better ex-
ploited.

5.1 Setup
For evaluation we run experiments on the Ultra-
Fine dataset with our model projecting onto the
hyperbolic space, and compare to the same set-
ting in Euclidean space. The type embeddings are

4We adapt pmi in order to satisfy the condition of non-
negativity.

5https://github.com/facebookresearch/
poincare-embeddings/
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Model Space Coarse Fine Ultra-fine Coarse
+ Ultra Variation

MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1 MaF1 MiF1
MULTITASK - 60.6 58.0 37.8 34.7 13.6 11.7 - - - -

WORDNET
Hyper 45.9 44.3 22.5 21.5 7.0 6.7 41.8 37.2 -4.1 -7.1
Euclid 56.1 54.2 26.6 25.3 7.2 6.5 56.6 48.5 0.6 -5.7

WORDNET
+ FREQ

Hyper 54.6 52.8 18.4 18.0 11.3 10.8 46.5 40.6 -8.0 -12.2
Euclid 56.7 54.9 27.3 26.0 12.1 11.5 55.8 49.1 -0.9 -5.8

FREQ
Hyper 56.5 54.6 26.8 25.7 16.0 15.2 59.7 53.5 3.2 -1.1
Euclid 56.1 54.2 25.8 24.4 12.1 11.4 60.0 53.0 3.9 -1.3

PMI
Hyper 54.7 53.0 26.9 25.8 16.0 15.4 57.5 51.8 2.8 -1.2
Euclid 56.5 54.6 26.9 25.6 12.2 11.5 59.7 53.0 3.2 -1.5

(a) Results on the same three granularities analyzed by Choi et al. (2018). (b) Comparison to previous coarse
results.

Table 2: Results on the test set for different hierarchies and spaces. The best results of our models are marked in
bold. On (b) we report the comparison of adding the closest coarse label to the ultra-fine prediction, with respect
to the coarse results on (a).

created based on the following hierarchical struc-
tures derived from the dataset: the type vocabulary
aligned to the WordNet hierarchy (WORDNET),
type co-occurrence frequency (FREQ), pointwise
mutual information among types (PMI), and fi-
nally, the combination of WordNet’s transitive
closure of each type with the co-occurrence fre-
quency graph (WORDNET + FREQ).

We compare our model to the multi-task model
of Choi et al. (2018) trained on the open-source
version of their dataset (MULTITASK). The fi-
nal type predictions consist of the closest neigh-
bor from the coarse and fine projections, and the
three closest neighbors from the ultra-fine projec-
tion. We report Loose Macro-averaged and Loose
Micro-averaged F1 metrics computed from the
precision/recall scores over the same three gran-
ularities established by Choi et al. (2018). For all
models we optimize Macro-averaged F1 on coarse
types on the validation set, and evaluate on the test
set. All experiments project onto a target space of
10 dimensions. The complete set of hyperparame-
ters is detailed in the Appendix.

6 Results and Discussion

6.1 Comparison of the Hierarchies

Results on the test set are reported in Table 2.
From comparing the different strategies to derive
the hierarchies, we can see that FREQ and PMI sub-
stantially outperform MULTITASK on the ultra-
fine granularity (17.5% and 29.8% relative im-
provement in Macro F1 and Micro F1, respec-
tively, with the hyperbolic model). Both hierar-
chies show a substantially better performance over
the WORDNET hierarchy on this granularity as

well (MaF1 16.0 and MiF1 15.4 for PMI vs 7.0 and
6.7 for WORDNET on the Hyperbolic model), in-
dicating that these structures, created solely from
the dataset statistics, better reflect the type distri-
bution in the annotations. On FREQ and PMI, types
that frequently co-occur on the training set are lo-
cated closer to each other, improving the predic-
tion based on nearest neighbor.

All the hierarchies show very low performance
on fine when compared to the MULTITASK model.
This exhibits a weakness of our regression setup.
On the test set there are 1,998 instances but only
1,318 fine labels as ground truth (see Table 1). By
forcing a prediction on the fine level for all in-
stances, precision decreases notably. More details
in Section 6.3.

The combined hierarchy WORDNET + FREQ

achieves marginal improvements on coarse and
fine granularities, while it degrades the perfor-
mance on ultra-fine when compared to FREQ.

By imposing a hierarchical structure over the
type vocabulary we can infer types that are located
higher up in the hierarchy from the predictions of
the lower ones. To analyze this, we add the clos-
est coarse label to the ultra-fine prediction of each
instance. Results are reported in Table 2b. The
improvements are noticeable on the Macro score
(up to 3.9 F1 points difference on FREQ) whereas
Micro decreases. Since we are adding types to the
prediction, this technique improves recall and pe-
nalizes precision. Macro is computed on the en-
tity level, while Micro provides an overall score,
showing that per instance the prediction tends to
be better. The improvements can be observed on
FREQ and PMI given that their predictions over
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a) Example Rin, Kohaku and Sesshomaru Rin befriends Kohaku, the demonslayer Sango’s younger
brother, while Kohaku acts as her guard when Naraku is using her for bait to lure Sesshomaru
into battle.

Annotation event, conflict, war, fight, battle, struggle, dispute, group action
Prediction FREQ: event, conflict, war, fight, battle;

WORDNET: event, conflict, difference, engagement, assault
b) Example The UN mission in Afghanistan dispatched its own investigation, expressing concern about

reports of civilian casualties and calling for them to be properly cared for.
Annotation organization, team, mission
Prediction FREQ: organization, team, mission, activity, operation;

WORDNET: group, institution, branch, delegation, corporation
c) Example Brazilian President Luiz Inacio Lula da Silva and Turkish Prime Minister Recep Tayyip Erdo-

gan talked about designing a strategy different from sanctions at a meeting Monday, Amorim
said.

Annotation event, meeting, conference, gathering, summit
Prediction FREQ: event, meeting, conference, film, campaign;

WORDNET: entity, meeting, gathering, structure, court

Table 3: Qualitative analysis of instances taken from the development set. The predictions are generated with the
hyperbolic models of FREQ and WORDNET. Correct predictions are marked in blue color.

ultra-fine types are better.

6.2 Comparison of the Spaces

When comparing performances with respect to the
metric spaces, the hyperbolic models for PMI and
FREQ outperform all other models on ultra-fine
granularity. Compared to its Euclidean counter-
part, PMI brings considerable improvements (16.0
vs 12.2 and 15.4 vs 11.5 for Macro and Micro F1
respectively). This can be explained by the expo-
nential growth of this space towards the bound-
ary of the ball, combined with a representation
that reflects the type co-occurrences in the dataset.
Figure 4 shows a histogram of the distribution of
ground-truth types as closest neighbors to the pre-
diction.

On both Euclidean and hyperbolic models, the
type embeddings for coarse and fine labels are lo-
cated closer to the origin of the space. In this re-
gion, the spaces show a much more similar behav-
ior in terms of the distance calculation, and this
similarity is reflected on the results as well.

The low performance of the hyperbolic model
of WORDNET on coarse can be explained by the
fact that entity is the root node of the hierarchy,
therefore it is located closer to the center of the
space. Elements placed in the vicinity of the origin
have a norm closer to zero, thus their distance to
other types tends to be shorter (does not grow ex-
ponentially). This often misleads the model into
assign entity as the coarse. See Table 3c for an
example.

This issue is alleviated on WORDNET + FREQ.
Nevertheless, it appears again when using the
ultra-fine prediction to infer the coarse label. The

drop in performance can be seen in Table 2b:
Macro F1 decreases by 8.0 and Micro F1 by 12.2.

6.3 Error analysis

We perform an error analysis on samples from the
development set and predictions from two of our
proposed hyperbolic models. We show three ex-
amples in Table 3. Overall we can see that pre-
dictions are reasonable, suggesting synonyms or
related words.

In the proposed regression setup, we predict a
fixed amount of labels per instance. This schema
has drawbacks as shown in example a), where all
predicted types by the FREQ model are correct
though we can not predict more, and b), where we
predict more related types that are not part of the
annotations.

In examples b) and c) we see how the FREQ

model predicts the coarse type correctly whereas
the model that uses the WordNet hierarchy pre-
dicts group and entity since these labels are con-
sidered more general (organization IS A group)
thus located closer to the origin of the space.

To analyse precision and recall more accurately,
we compare our model to the one of Shimaoka
et al. (2016) (ATTNER) and the multi-task model
of Choi et al. (2018) (MULTI). We show the results
for macro-averaged metrics in Table 4. Our model
is able to achieve higher recall but lower precision.
Nonetheless we are able to outperform ATTNER
with a regression model even though they apply a
classifier to the task.
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Model Dev Test
P R F1 P R F1

ATTNER 53.7 15.0 23.5 54.2 15.2 23.7
FREQ 24.8 25.9 25.4 25.6 26.8 26.2
MULTI 48.1 23.2 31.3 47.1 24.2 32.0

Table 4: Combined performance over the three granu-
larities. Results are extracted from Choi et al. (2018).

Model Sp Coarse Fine Ultra
Ma Mi Ma Mi Ma Mi

ONTO
Hy 83.0 81.9 24.0 23.9 2.0 2.0
Eu 82.2 82.2 28.8 28.7 2.4 2.4

FREQ
Hy 81.7 81.8 27.1 27.1 4.2 4.2
Eu 81.7 81.7 30.6 30.6 3.8 3.8

Table 5: Macro and micro F1 results on OntoNotes.

6.4 Analysis Case: OntoNotes

To better understand the effects of the hierarchy
and the metric spaces we also perform an evalua-
tion on OntoNotes (Gillick et al., 2014). We com-
pare the original hierarchy of the dataset (ONTO),
and one derived from the type co-occurrence fre-
quency extracted from the data augmented by
Choi et al. (2018) with this type inventory. The
results for the three granularities are presented in
Table 5.

The FREQ model on the hyperbolic geome-
try achieves the best performance for the ultra-
fine granularity, in accordance with the results on
the Ultra-Fine dataset. In this case the improve-
ments of the frequency-based hierarchy are not so
remarkable when compared to the ONTO model
given that the type inventory is much smaller, and
the annotations follow a hierarchy where there is
only one possible path for every label to its coarse
type.

The low results on the ultra-fine granularity are

Figure 4: Histogram of ground-truth type neighbor po-
sitions for ultra-fine predictions in Hyperbolic and Eu-
clidean spaces on the test set.

due to the reduced multiplicity of the annotated
types (See Table 8). Most instances have only one
or two types, setting very restrictive upper bounds
for this setup.

7 Related Work

Type inventories for the task of fine-grained entity
typing (Ling and Weld, 2012; Gillick et al., 2014;
Yosef et al., 2012) have grown in size and com-
plexity (Del Corro et al., 2015; Murty et al., 2017;
Choi et al., 2018). Systems have tried to incorpo-
rate hierarchical information on the type distribu-
tion in different manners. Shimaoka et al. (2017)
encode the hierarchy through a sparse matrix. Xu
and Barbosa (2018) model the relations through
a hierarchy-aware loss function. Ma et al. (2016)
and Abhishek et al. (2017) learn embeddings for
labels and feature representations into a joint space
in order to facilitate information sharing among
them. Our work resembles Xiong et al. (2019)
since they derive hierarchical information in an
unrestricted fashion, through type co-occurrence
statistics from the dataset. These models operate
under Euclidean assumptions. Instead, we impose
a hyperbolic geometry to enrich the hierarchical
information.

Hyperbolic spaces have been applied mostly on
complex and social networks modeling (Krioukov
et al., 2010; Verbeek and Suri, 2016). In the field
of Natural Language Processing, they have been
employed to learn embeddings for Question An-
swering (Tay et al., 2018), in Neural Machine
Translation (Gulcehre et al., 2019), and to model
language (Leimeister and Wilson, 2018; Tifrea
et al., 2019). We build upon the work of Nickel
and Kiela (2017) on modeling hierarchical link
structure of symbolic data and adapt it with the pa-
rameterization method proposed by Dhingra et al.
(2018) to cope with feature representations of text.

8 Conclusions

Incorporation of hierarchical information from
large type inventories into neural models has be-
come critical to improve performance. In this
work we analyze expert-generated and data-driven
hierarchies, and the geometrical properties pro-
vided by the choice of the vector space, in order
to model this information. Experiments on two
different datasets show consistent improvements
of hyperbolic embedding over Euclidean baselines
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on very fine-grained labels when the hierarchy re-
flects the annotated type distribution.
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A Appendix

A.1 Hyperparameters
Both hyperbolic and Euclidean models were
trained with the following hyperparameters.

Parameter Value
Word embedding dim 300
Max mention tokens 5
Max mention chars 25
Context length (per side) 10
Char embedding dim 50
Position embedding dim 25
Context LSTM dim 200
Attention dim 100
Mention dropout 0.5
Context dropout 0.2
Max gradient norm 10
Projection hidden dim 500
Optimizer Adam
Learning rate 0.001
Batch size 1024
Epochs 50

Table 6: Model hyperparameters.

A.2 Dataset statistics

Split Samples Coarse Fine Ultra-fine
Train 6,240,105 2,148,669 2,664,933 3,368,607
Dev 1,998 1,612 947 1,860
Test 1,998 1,598 964 1,864

Table 7: Amount of samples with at least one la-
bel of the granularity organized by split on Ultra-Fine
Dataset.

Split Samples Coarse Fine Ultra
Train 793,487 828,840 735,162 301,006
Dev 2,202 2,337 869 76
Test 8,963 9,455 3,521 417

Table 8: Samples and label distribution by split on
OntoNotes Dataset.
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Abstract

In this paper, we propose Multilingual Meta-
Embeddings (MME), an effective method to
learn multilingual representations by lever-
aging monolingual pre-trained embeddings.
MME learns to utilize information from these
embeddings via a self-attention mechanism
without explicit language identification. We
evaluate the proposed embedding method on
the code-switching English-Spanish Named
Entity Recognition dataset in a multilingual
and cross-lingual setting. The experimental re-
sults show that our proposed method achieves
state-of-the-art performance on the multilin-
gual setting, and it has the ability to generalize
to an unseen language task.

1 Introduction

Learning a representation through embedding is a
fundamental technique to capture latent word se-
mantics (Clark, 2015). Practically, word-level rep-
resentation has been extensively explored to im-
prove many downstream natural language process-
ing (NLP) tasks (Mikolov et al., 2013; Pennington
et al., 2014; Grave et al., 2018). A new wave of
"meta-embeddings" research aims to learn how to
effectively combine pre-trained word embeddings
in supervised training into a single dense represen-
tation (Yin and Schütze, 2016; Muromägi et al.,
2017; Bollegala et al., 2018; Coates and Bollegala,
2018; Kiela et al., 2018). This method is known
to be effective to overcome domain and modality
limitations. However, the generalization ability of
previous works has been limited to monolingual
tasks, so we aim to extend the method to multi-
lingual contexts which benefits the processing of
code-switching text.

In multilingual societies, speakers tend to move
back and forth from one language to another dur-
ing the same conversation, which is commonly

E1

Multilingual MetaEmbedding

E2 E3 ... En

auxiliary  
languages

primary  
languages

αi,j

w
′

i,1
w

′

i,2
w

′

i,3 ... w
′

i,n

Input

Figure 1: Multilingual Meta-Embeddings. The inputs
are word embeddings and the output is a single word
representation.

called “code-switching". Code-Switching is pro-
duced in both written text and speech in a dis-
course. Recent studies in code-switching has been
mainly focused on natural language tasks, such
as language modeling (Winata et al., 2018a; Prat-
apa et al., 2018; Garg et al., 2018), named entity
recognition (Aguilar et al., 2018), and language
identification (Solorio et al., 2014; Molina et al.,
2016; Barman et al., 2014). Code-Switching is
considered as a challenging task because words
from different languages may co-exist within a se-
quence, and models are required to recognize the
context of mixed-language sentences. Meanwhile,
some words with the same spelling may have en-
tirely different meanings (e.g., cola in English and
Spanish) (Winata et al., 2018b). Language identi-
fiers were commonly used to solve the word am-
biguity issue in mixed-language sentences. How-
ever, it may not reliably cover all code-switching
cases, and it creates a bottleneck that would re-
quire large-scale crowdsourcing to annotate lan-
guage identifiers in code-switching data correctly.

To overcome the code-switching problem, we
introduce a multilingual meta-embedding model
learned from different languages. Our approach
can be seen as a method to create a universal mul-
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tilingual meta-embedding learned in a supervised
way with code-switching contexts by gathering
information from monolingual sources. Concur-
rently, this is a language-agnostic approach where
it does not require any language information of
each word. We show the possibility of transfer-
ring information from multiple languages to un-
seen languages, and this approach can also be use-
ful for a low-resource setting. To effectively lever-
age the embeddings, we use FastText subwords
information to solve out-of-vocabulary (OOV) is-
sues. By applying this method, our model can
align the words with the corresponding languages.
Our contributions are two-fold:

• We propose to generate multilingual meta-
representations from pre-trained monolin-
gual word embeddings. The model can learn
how to construct the best word representation
by mixing multiple sources without explicit
language identification.

• We evaluate our multilingual meta-
embedding on English-Spanish code-
switching Named Entity Recognition
(NER). The result shows the effectiveness
of the method on multilingual setting and
demonstrates that our meta-embedding
can generalize to unseen languages in a
cross-lingual setting.

2 Meta-Embeddings

Word embedding pre-training is a well-known
method to transfer the knowledge from previous
tasks to a target task that has fewer high-quality
training data. Word embeddings are commonly
used as features in supervised learning problems.
We propose to generate a single word representa-
tion by extracting information from different pre-
trained embeddings. We extend the idea of meta-
embeddings from Kiela et al. (2018) to solve a
multilingual task. We define a sentence that con-
sists of m words {xj}mj=1, and {wi,j}nj=1 word
vectors from n pre-trained word embeddings.

2.1 Baselines

We compare our method to two baselines: (1) con-
catenation and (2) linear ensembles.

Concatenation We concatenate word embed-
dings by merging the dimensions of word repre-
sentations. This is the simplest way to utilize all

sources of information; however, it is very ineffi-
cient due to the high-dimensional input:

wCONCAT
i = [wi,1, ...,wi,n]. (1)

Linear Ensembles We sum all word embed-
dings into a single word vector with an equal
weight. This method is efficient since it does not
increase the dimensionality of the input. We ap-
ply a projection layer through wi,j to have equal
dimension before we sum:

wLINEAR
i =

n∑

j=0

w′i,j , (2)

w′i,j = aj ·wi,j + bj , (3)

where aj ∈ Rl×d and bj ∈ Rd are trainable param-
eters, and l and d are the original dimensions of the
pre-trained embeddings and projected dimensions
respectively.

2.2 Multilingual Meta-Embedding
We generate a multilingual vector representation
for each word by taking a weighted sum of mono-
lingual embeddings. Each embedding wi,j is pro-
jected with a fully connected layer with a non-
linear scoring function φ (e.g., tanh) into a d-
dimensional vector, and an attention mechanism
to calculate attention weight αi,j ∈ Rd:

wMME
i =

n∑

j=1

αi,jw
′
i,j , (4)

αi,j =
eφ(w

′
i,j)

∑n
j=1 e

φ(w′i,j))
. (5)

3 Named Entity Recognition

Our proposed model is based on a self-attention
mechanism from a transformer encoder (Vaswani
et al., 2017) followed by a Conditional Random
Field (CRF) layer (Lafferty et al., 2001).

Encoder Architecture We apply a multi-layer
transformer encoder as our sentence encoder:

h0 = Concat(w0,w1, . . . ,wm)Wt +Wp, (6)

hl = Transformer_blocks(h0), (7)

o = hlWo + bo, (8)

where Wt is the projection matrix, Wp is the po-
sitional encoding matrix, Wo is the output layer,
h0 is the first layer hidden states, and hl is the out-
put representation from the final transformer layer.
The output of the final layer is logits o.
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Conditional Random Field This model calcu-
lates the dependencies across tag labels. NER
requires a stronger constraint where I-PERSON
should follow only after B-PERSON. We use CRF
to learn the correlations between the current la-
bel and its neighbors (Lafferty et al., 2001). We
consider A ∈ R(k+2)×(k+2) as a trainable matrix,
transition scores of the tags, where k is the num-
ber of tags. Ai,j denotes the transition score from
tag i to tag j. We include a start tag and an end
tag in the matrix, and calculate the score of a tag
sequence y given o as follows:

s(o,y) =

n∑

i=0

Ayi,yi+1 +

n∑

i=0

Pi,yi , (9)

where Pi,yi ∈ Rn×k represents the output proba-
bility of the tags. We use the Viterbi algorithm to
select the best sequence.

4 Experiments

4.1 Dataset

For our experiment, we use English-Spanish
tweets data provided by Aguilar et al. (2018).
There are nine entity labels. The labels use
IOB format, where every token is labeled as a
B-label in the beginning and then an I-label
if it is a named entity, or O otherwise.

4.2 Experimental Setup

We use pre-trained FastText 1 English (EN) and
Spanish (ES) word embeddings (Grave et al.,
2018) as our primary language embeddings, and
pre-trained FastText Catalan (CA) and Portuguese
(PT) word embeddings as our auxiliary language
embeddings. We opt for CA and PT because they
come from the same Romance language family
as Spanish. We also include GloVe Twitter En-
glish embedding (GLOVE_EN) (Pennington et al.,
2014).2 Experiments are conducted in two differ-
ent settings. In the multilingual setting, we learn
our meta-embedding from primary languages and
auxiliary languages, while in the cross-lingual set-
ting only auxiliary languages are used. We run
all experiments five times and calculate the aver-
age and standard deviation. To improve our final
predictions, we ensemble all five experiments and
take the results from a majority consensus.

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://nlp.stanford.edu/projects/glove/

Approaches F1
Trivedi et al. (2018) (Single) 61.89
Wang et al. (2018) (Single) 62.39
Wang et al. (2018) (Ensemble) 62.67
Winata et al. (2018b) (Single) 62.76
Trivedi et al. (2018) (Ensemble) 63.76
MONOLINGUAL
EN 62.75 ± 0.66

ES 62.91 ± 1.07

CONCAT
EN + ES 65.30 ± 0.38

EN + ES + CA 65.36 ± 0.85

EN + ES + PT 65.53 ± 0.79

EN + ES + CA + PT 64.99 ± 1.06

LINEAR
EN + ES + CA + PT (Single) 65.33 ± 0.87

EN + ES + CA + PT (Ensemble) 67.03
MME
EN + ES 65.43 ± 0.67

EN + ES + CA 65.69 ± 0.83

EN + ES + PT 65.65 ± 0.48

EN + ES + CA + PT (Single) 66.63 ± 0.94
EN + ES + CA + PT (Ensemble) 68.34

Table 1: Multilingual results (mean and standard devia-
tion from five experiments). EN: both English FastText
and GloVe word embeddings.

Implementation Details Our model is trained
using a Noam optimizer with a dropout of 0.1
for multilingual setting and 0.3 for the cross-
lingual setting. Our model contains four lay-
ers of transformer blocks with a hidden size of
200 and four heads. We start the training with
a learning rate of 0.1. We replace user hashtags
(#user) and mentions (@user) with <USR>, and
URL (https://domain.com) with <URL>, similarly
to Winata et al. (2018b).

5 Results

Multilingual experimental results are shown in Ta-
ble 1. Interestingly, both concatenation and lin-
ear ensemble are strong baselines since they can
achieve higher performance compared to any ex-
isting works that use more complicated features,
such as character-based features using a bidirec-
tional long short-term memory (LSTM) (Winata
et al., 2018b; Wang et al., 2018) or a convolutional
neural network (CNN) with additional gazetteers
(Trivedi et al., 2018). Overall, our transformer en-
coder using a single word embedding achieves bet-
ter performance compared to the LSTM encoder
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Figure 2: An example of attention weights on a development sample evaluated from a multilingual model (top)
and a cross-lingual model (bottom). Darker color shows higher attention scores.

Approaches F1
MONOLINGUAL
CA 53.96 ± 1.42

PT 54.86 ± 4.10

CONCAT
CA + PT 58.28 ± 2.66

LINEAR
CA + PT (Single) 60.72 ± 0.84

CA + PT (Ensemble) 62.9
MME
CA + PT (Single) 61.75 ± 0.56
CA + PT (Ensemble) 63.66

Table 2: Cross-lingual results (mean and standard de-
viation from five experiments).

structure used by Winata et al. (2018b); Trivedi
et al. (2018); Wang et al. (2018). More impor-
tantly, MME outperforms the two baselines on dif-
ferent language combinations, which shows its ef-
fectiveness. The results also show that the two
baselines cannot effectively exploit the informa-
tion from auxiliary languages. Here we note that
the main advantage of MME is that it dynamically
weights the different language pre-trained embed-
dings for each input token, while the concatena-
tion and linear ensemble approaches always score
the weights equally.

In the cross-lingual setting, our model does not
perform well when we only use one auxiliary lan-
guage, as seen in Table 2. A significant improve-
ment is shown after we combine both languages,
and MME shows a similar performance to the pre-
vious state-of-the-art result (Trivedi et al., 2018).
This implies that our approach can effectively gen-
eralize word representations on an unseen lan-
guage task by transferring information from lan-

guages that come from the same root as the pri-
mary languages.

We inspect the assigned weights on word em-
beddings to see which embedding our model at-
tends. Figure 2 visualizes the weights for the mul-
tilingual and cross-lingual cases. It appears that
our model can align words to their languages (e.g.,
Spanish words, such as “ti", “te", and “ponen"
attend to ES) with strong confidences. In most
cases, our model strongly attends to a single lan-
guage and takes a small proportion of information
from other languages. It shows the potential to au-
tomatically learn how to construct a multilingual
embedding from semantically similar embeddings
without requiring any language labels.

6 Related Work

Early studies on named entity recognition heavily
relied on language-specific knowledge resources,
such as hand-crafted features or gazetteers (Laf-
ferty et al., 2001; Ratinov and Roth, 2009; Tsai
et al., 2016). However, this approach was costly
for new languages and domains. Thus, end-to-
end approaches that do not rely on any external
knowledge were proposed. Sobhana et al. (2010)
proposed to use a CRF without any external re-
sources, to leverage the label dependencies. Then,
neural-based approaches, such as LSTM with a
CRF (Lample et al., 2016; Lin et al., 2017; Green-
berg et al., 2018) and LSTM with a CNN (Chiu
and Nichols, 2016) showed a significant improve-
ment in performance. Liu et al. (2018); Trivedi
et al. (2018) proposed a character-level LSTM to
capture the underlying style and structure, such
as word boundaries and spellings. Finally, word-
embedding ensemble techniques and preprocess-
ing techniques, such as tokenization and normal-
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ization have been introduced to reduce OOV is-
sues (Winata et al., 2018b; Wang et al., 2018).

7 Conclusion

In this paper, we propose a novel approach to learn
multilingual representations by leveraging mono-
lingual pre-trained embeddings. MME solves
the dependencies on the language identification
in code-switching Named Entity Recognition task
since it utilizes more information from semanti-
cally similar embeddings. The experiment results
show that our method surpasses previous works
and baselines, achieving the state-of-the-art per-
formance. Moreover, cross-lingual setting exper-
iments demonstrate the generalization ability of
MME to an unseen language task.
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Abstract

For morphologically rich languages, word em-
beddings provide less consistent semantic rep-
resentations due to higher variance in word
forms. Moreover, these languages often al-
low for less constrained word order, which fur-
ther increases variance. For the highly agglu-
tinative Hungarian, semantic accuracy of word
embeddings measured on word analogy tasks
drops by 50-75% compared to English. We
observed that embeddings learn morphosyntax
quite well instead.

Therefore, we explore and evaluate several
sub-word unit based embedding strategies –
character n-grams, lemmatization provided
by an NLP-pipeline, and segments obtained
in unsupervised learning (morfessor) – to
boost semantic consistency in Hungarian word
vectors. The effect of changing embed-
ding dimension and context window size have
also been considered. Morphological analysis
based lemmatization was found to be the best
strategy to improve embeddings’ semantic ac-
curacy, whereas adding character n-grams was
found consistently counterproductive in this
regard.

1 Introduction

Word embeddings show amazing capabilities
in representing semantic relations, which has
been demonstrated in analogical reasoning tasks
(Mikolov et al., 2013b; Gladkova and Drozd,
2016). They are also capable of learning mor-
phosyntax, showing again a consistent mapping of
grammatical operations, i.e. inflections (see Sec-
tion 2). Word embeddings obtain such semantic
and syntactic capabilities by matching the words
to their observed contexts (or vice versa). Since
the size of the word vector table is the vocabu-
lary size times the embedding dimension, for lan-
guages with rich morphology (especially aggluti-

native ones), this results in huge matrices (Takala,
2016). The vocabulary needs to be increased for
morphologically rich languages to ensure a high
enough coverage for the overall occurring words.
Furthermore, to obtain a reliable estimate of word
vectors, a larger training corpus is required so that
theoretically the same convergence of the estima-
tion can be reached than for a non agglutinative
language. Finally, morphologically rich languages
can express grammatical relations through suffixes
(i.e. case endings) and hence let the word order
becoming less constrained than in configurational
languages. This can result in higher context vari-
ability, which translates again into less accurate
estimates (i.e. the effect of migrating words out-
side the context window can be imagined as a
kind of smoothing, making representation more
blurred). Augmenting the size of the context win-
dow is not a effective counter-measure, as it will
result again in higher variability of the context.

Bojanowski et al. (2017) proposes character
level enhancement for word embeddings to over-
come difficulties caused by unseen or rare words.
It is demonstrated for a large set of languages
that adding character n-grams to the embeddings
can be a powerful way of generating word vec-
tors for unseen words, and this augments both se-
mantic and syntactic consistency (and accuracy)
of the embeddings. However, Bojanowski et al.
(2017) tests no highly agglutinative language for
their embeddings’ syntactic and semantic accura-
cies with and without n-grams.

We conduct proper evaluation on an analogy set
for Hungarian (Makrai, 2015) designed accord-
ing to the standard Mikolov et al. (2013a), and
show that the already weak baseline semantic ac-
curacy consistently decreases when character n-
grams are added. On the other hand, embeddings
learn the complex Hungarian morphosyntax quite
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well. Our ambition in this work is to address these
issues emerging from large vocabulary and less
constrained word order. We systematically inves-
tigate and analyze sub-word embedding strategies
for the very highly agglutinating Hungarian lan-
guage. We are basically interested in benchmark-
ing syntactic and semantic accuracies with each of
the methods, therefore we are primarily engaged
in testing morphological analysis, lemmatization
and stemming based alternatives.

2 Related work

The closest work to ours is a concurrent study
(Zhu et al., 2019) of subword models especially
for morphologically rich languages across differ-
ent tasks. Unfortunately they miss Hungarian,
which leaved a huge gap, as they find that per-
formance is both language- and task-dependent.
They find that unsupervised segmentation (e.g.,
BPE, Morfessor, see later in this section) is some-
times comparable to or even outperform super-
vised word segmentation.

Morphology in word embeddings The mor-
phologically informed approach to composition-
ally gained word embedding vectors start with
Lazaridou et al. (2013) and Luong et al. (2013),
who train a Recursive Neural Network, which
builds representations for morphologically com-
plex words from their morphemes.

The work of Soricut and Och (2015) can be re-
garded as the unsupervised counterpart of Mikolov
et al. (2013b)-style analogical questions. Soricut
induces morphological relations as the systematic
difference of embedding vectors in an unsuper-
vised manner. They evaluate on word-similarity.

Relying on existing morphological resources,
Cotterell et al. (2016) introduce a latent-variable
morphological model that extrapolates vectors for
unseen words, and smoothes those of observed
words over several languages.

Cao and Rei (2016) introduce a joint model
for unsupervised segmentation and weighted
character-level composition. Cotterell et al. (2018)
compute supervised models for the same two
sub-tasks of morphological analysis, also in-
duces a canonical form (i.e. models orthographic
changes).

Language modeling and characters Morpho-
logically compositional language modeling proper
begins with Botha and Blunsom (2014)’s decoder

in machine translation to morphologically rich
languages, which is unsupervised with respect
to morphological segmentation. Cotterell and
Schütze (2015) augment the log-bilinear language
model (LM) (Mnih and Hinton, 2007) with a
multi-task objective for morphological tags along
with the next word.

Character n-gram features proved to be pow-
erful as the basis of Facebook’s fastText classi-
fier (Joulin et al., 2016). Subword units based
on byte-pair encoding have been found to be par-
ticularly useful for machine translation (Sennrich
et al., 2016), and even in models based on matrix
factorization (Salle and Villavicencio, 2018).

Hungarian In their de-glutinatve method, Bor-
bély et al. (2016) and Nemeskey (2017) split all
inflectional prefixes into separate tokens for bet-
ter morphological generalization. Nemeskey opts
for supervised morphological knowledge because
of linguistic interpretability. Lévai and Kornai
(2019) analyze Hungarian word embedding vec-
tors grouped by the morphological tag of the cor-
responding word. They investigate whether the
coherence of these classes correlate with the speci-
ficity or the frequency of the tag.

3 Experiments

3.1 Corpus, segmentation, and embeddings

For training the word vector models, we rely on
the fastText (Joulin et al., 2016) tool, which also
allows for augmentation with character n-grams,
if desired. We do not use stemming, but go in-
stead for some more sophisticated analysis. As we
explained, our primary goal is benchmarking the
individual approaches.

For a true morphological analysis, we use the
magyarlánc (Zsibrita et al., 2013) toolkit, which
provides lemmatization in the form of a stem
plus a suffix series, also decomposed into individ-
ual component morphemes. Although some dis-
ambiguation capability arises from sentence level
part-of-speech tagging, magyarlánc may end up
with several hypotheses for the morphological
composition of the input word. Fortunately this
happens rarely at the lemma level. If still, the
shortest lemma is used.

For unsupervised pseudo-morphemic analysis,
we use Morfessor (Virpioja et al., 2013). Mor-
fessor has been used to provide subword unit to-
kens for Automatic Speech Recognition in heav-
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Parameter Value range
Frequency cut-off 5
Min length of char ngram none or 3
Max length of char ngram none or 6
Embedding dimension 100-200
Context window 5–25
Learning rate (α) 0.05
α update interval 100
Number of epochs 15
Negative sampling loss yes
Negative samples 5
Pretraining none

Table 1: Embedding vector trainer parameters.

ily agglutinative languages, with improved accu-
racy (Enarvi et al., 2017) over word based vocab-
ularies and models. Morfessor is based on statis-
tical machine learning. In order to reflect that the
provided subword units are not true morphemes in
the grammatical sense, they are called morfs.

The text corpus we use is a contemporary dump
of Hungarian language web pages constructed for
this paper, which covers mostly online newspapers
in various fields from years 2014-2018. The cor-
pus has over 70 M word tokens. Text normaliza-
tion is performed with a Python script.

3.2 Analogical questions

Our approach is to train word embeddings in dif-
ferent scenarios and assess syntactic and seman-
tic accuracies based on a Hungarian analogy test
(Makrai, 2015) that has been constructed accord-
ing to (Mikolov et al., 2013a). For the seman-
tic accuracy, we use country-capital and
country-currency pairs. For the syntactic
accuracy we use singular-plural for nouns,
present-past tense for verbs and base
vs comparative forms for adjectives.

3.3 Fasttext settings

There are three main parameters which are con-
trolled during the experiments: (i) whether we use
character n-gram augmentation or not; (ii) the size
of the context window; and (iii) the target dimen-
sion of the resulting embedding vectors. We pre-
ferred to preserve all other parameters of fastText
at their default value. The most important of these
parameters are summarized in Table 1.

3.4 Embedding strategies

Word vectors (W) This constitutes our baseline.
A standard word embedding is trained with fast-
Text, no prior stop word filtering is applied.

Lemma vectors (L) The magyarlánc toolkit is
used for morphological analysis. Lemmas are
identified and used as embedded entities. Note
that whereas ambiguity on the entire morphologi-
cal composition may arise, ambiguity affecting the
lemma’s surface form is rare. If this still occurs,
the shortest form is used.

Morf vectors (M) Running Morfessor yields a
morf based split-up. Morfs become the model-
ing unit (subword unit). As an alternative, using
the root (R) yielded by Morfessor is evaluated as
well. The word embedding is trained on the cor-
pus with words divided into segments (as if they
were separate words). During testing in analogi-
cal questions, query words are also spitted to seg-
ments, and their vectors are computed as the sum
of the segments’ vectors.

Vector dimension is changed between 100 and
200. We did not consider using higher dimensions
to avoid making down-stream applications heavy.

More experimental details and related work can
be found in a longer version of this paper, which
appeared at Repl4NLP 2019. We will refer to the
individual setups by specifying the unit out of {W,
L, M, R} and the dimension, e.g. L200 will refer to
lemma as unit and 200-dimensional embeddings.

4 Results

4.1 Extending the context window

As we pointed out in Section 1, using wider con-
text may help in overcoming the difficulties result-
ing from the less constrained word order of Hun-
garian. A wider context window allows for captur-
ing words further apart, but it may have an adverse
effect as well, because the context becomes more
noisy (variable). Relative data sparsity may also
be a problem when a larger context is considered.
So basically our research question related to the
context of a word is that whether the benefits of
capturing further apart words can be superior com-
pared to the negative effect of increasing variance
w.r.t the occurring context words.

It has been reported (Lebret and Collobert,
2015) that semantic analogical questions benefit
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Figure 1: Semantic accuracies of Hungarian 100 di-
mensional embeddings with different strategies.

Figure 2: Syntactic accuracies of Hungarian 100 di-
mensional embeddings with different strategies.

from larger windows, while syntactic ones do not.
On the contrary, experimenting with SVD models
and different window sizes, Gladkova and Drozd
(2016) find that all categories of analogical ques-
tions are best detected between window sizes 2–4,
although a handful of them yield equally good per-
formance in larger windows. They find no one-on-
one correspondence between semantics and larger
windows. We consider unusually large contexts of
up to 25 words (see Table 1). i

Semantic and syntactic accuracies with 100 di-
mensional embeddings are shown in Figures 1
and 2, respectively. Comparing strategies, using
the lemma (L) for embedding is yielding the high-
est semantic accuracy. Regarding the context win-
dow, our hypothesis that long context windows
may be a better fit is confirmed. All the four strate-
gies consistently show increasing semantic accu-
racy as context window is extended to cover 21
units. Compared to W, L embeddings yield higher
semantic accuracy by 75%. Nevertheless, syn-
tactic accuracies decrease tendentiously when ex-
tending the context window, which is a negative
effect, most likely resulting from the higher varia-
tion seen in a larger window.

Figure 3: Semantic and syntactic accuracies of Hungar-
ian 100 dimensional word embeddings with (chr) and
without (nochr) character n-grams.

4.2 Adding character n-grams

We have already mentioned in the Introduction
that in contrast to many other languages (Bo-
janowski et al., 2016), the very highly agglutina-
tive Hungarian cannot profit from adding charac-
ter n-grams to the embeddings: semantic (but also
syntactic) accuracy gets lower. We suppose that
this happens because agglutination is frequent and
hence word vectors become universal (i.e. they
cannot specialize for the context). The less con-
strained word order interplays in this, too.

Figure 3 shows how semantic and syntactic ac-
curacies change when adding character n-grams
(sem+chr and syn+chr, respectively) in the W100
case. We present again a trend with increasing
context window size on the horizontal axis to al-
low for easy comparison with the previous results.

Regarding semantic accuracies, no benefit is
registered when adding character n-grams with
any of the 4 investigated embedding strategies.

Adding character n-grams becomes helpful at
the syntax level in some cases, syntactic accura-
cies augment for the L100, L200 and R200 sce-
narios. Nevertheless, the basis is very low as for
using the lemmas or morf roots, most of the mor-
phosyntactic information is lost. Not surprisingly,
semantics improves with a large window, while
morphosyntax does not.

4.3 Embedding dimension

Figure 4 compares semantic accuracies of 100 and
200 dimensional scenarios with a context window
of 21. Increasing the embedding dimension has
a positive effect on semantic accuracies, as far as
up to 50% relative increase in accuracy. Accu-
racy in individual relations (whose importance has
been shown by Gladkova and Drozd (2016)) are
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Figure 4: Semantic accuracies of Hungarian 100 and
200 dimensional embeddings with different strategies;
context window covers 21 units.

capital-common-countries 66.0% (101/153)
capital-world 40.3% (2595/6441)
county-center 18.2% (12/66)
currency 6.4% (26/406)
family 16.5% (15/91)

Semantic 38.41% (2749/7157)

Table 2: Results in individual semantic relations with
the best setting (magyarlánc, window 21, dimension
200, no character n-grams).

reported in Table 2. We can again observe that
adding character n-grams consistently results in
decreased semantic accuracy.

Increasing embedding dimensions above 200
could be expected to yield further improvement is
semantic accuracies, but we did not address this is-
sue in our current work, which focuses mostly on
the modeling unit and its optimal context.

5 Conclusions

In this work, we analyzed embedding strategies
for the morphologically very rich Hungarian lan-
guage. Unlike may other languages, Hungarian
cannot profit from character n-gram enhancement
of word embeddings, whereas rich morphology re-
sults in very large vocabulary and less constrained
word order, both contributing to very high varia-
tion in the data used for training the embeddings.
Therefore we analyzed subword embedding strate-
gies above the character level. Results showed
that using the lemmas instead of the words was
by far the most effective approach by maximizing
semantic accuracy of the embeddings. Using the
roots yielded by the morfessor tool also con-
tributed to an increase in semantic accuracy, but
to a smaller extent compared to lemmas learned

in a supervised fashion. Obviously, syntactic ac-
curacies were found decreasing when switching
to lemma units. Adding character n-grams was
counterproductive with any investigated strategy
w.r.t semantic accuracy. Analyzing the effect of
extending the context window showed that despite
the higher variance of units seen in a larger con-
text, embeddings can still profit from these to in-
crease their semantic consistence. This found-
ing was consistent with all investigated sub-word
strategies, and is therefore an efficient way of deal-
ing with the weakly constrained word order.

Future work may investigate whether results
generalize to other embedding algorithms (besides
fastText, the original and the enhanced (Mikolov
et al., 2018) word2vec and the GloVe (Řehůřek
and Sojka, 2010) implementations of the continu-
ous bag of words and the skip-gram models could
be tried); extend the ablation over dimensional-
ity up to a few hundred dimensions; and ana-
lyze other morphologically rich languages (e.g.
Finnish, Turkish, or Slavic languages). The bot-
tleneck is that we are restricted to languages to
which the analogical questions have been trans-
lated. As a reviewer noted, the semantic part of
the Mikolov-style analogical questions consist of a
handful of semantic relations between named enti-
ties. It is questionable how appropriate it is to use
them for the evaluation of the embedding strate-
gies, especially that of encoding lexical seman-
tic relations and not the world knowledge. Glad-
kova and Drozd (2016) examine Mikolov et al.
(2013b)-style analogical questions systematically,
finding that different systems shine at different
sub-categories of the morphological and semantic
tasks. They publish a test set which is more dif-
ficult than existing ones. Translating this test set
to morphologically rich languages would be very
useful.
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Abstract

Short text clustering is a challenging problem
when adopting traditional bag-of-words or TF-
IDF representations, since these lead to sparse
vector representations for short texts. Low-
dimensional continuous representations or em-
beddings can counter that sparseness prob-
lem: their high representational power is ex-
ploited in deep clustering algorithms. While
deep clustering has been studied extensively in
computer vision, relatively little work has fo-
cused on NLP. The method we propose, learns
discriminative features from both an autoen-
coder and a sentence embedding, then uses as-
signments from a clustering algorithm as su-
pervision to update weights of the encoder net-
work. Experiments on three short text datasets
empirically validate the effectiveness of our
method.

1 Introduction

Text clustering groups semantically similar text
without using supervision or manually assigned
labels. Text clusters have proven to be benefi-
cial in many applications including news recom-
mendation (Wang et al., 2010), language model-
ing (Liu and Croft, 2004), query expansion (Amini
and Usunier, 2007), visualization (Cadez et al.,
2003), and corpus summarization (Schutze and
Silverstein, 1997).

Due to the popularity of social media and on-
line fora such as Twitter and Reddit, texts con-
taining only few words have become prevalent
on the web. Compared to clustering of long
documents, Short Text Clustering (STC) intro-
duces additional challenges. Traditionally, text is
represented as a bag-of-words (BOW) or term-
frequency inverse-document-frequency (TF-IDF)
vectors, after which a clustering algorithm such as
k-means is applied to partition the texts into homo-
geneous groups (Xu et al., 2017). Due to the short

lengths of such texts, their vector representations
tend to become very sparse. As a result, traditional
measures for similarity, which rely on word over-
lap or distance between high-dimensional vectors,
become ineffective (Xu et al., 2015).

Previous work on STC enriched short text rep-
resentations by incorporating features from exter-
nal resources. Hu et al. (2009) and Banerjee et al.
(2007) extended short texts using articles from
Wikipedia. In similar fashion, Hotho et al. (2003)
and Wei et al. (2015) proposed different meth-
ods to enrich text representation using ontologies.
More recently, low-dimensional representations
have shown potential to counter the sparsity prob-
lem in STC. Combined with neural network ar-
chitectures, embeddings of words (Mikolov et al.,
2013; Pennington et al., 2014), sentences (Le and
Mikolov, 2014; Kiros et al., 2015) and documents
(Dai et al., 2015) were proven to be effective on a
variety of tasks in machine learning for NLP.

Deep clustering methods first embed the high-
dimensional data into a lower dimensional space,
after which a clustering algorithm is applied.
These methods either perform clustering after hav-
ing trained the embedding transformation (Tian
et al., 2014; De Boom et al., 2016), or jointly op-
timize both the embedding and clustering (Yang
et al., 2016), and we situate our method in the for-
mer. Closely related to our work is the method
of Deep Embedded Clustering (DEC) (Xie et al.,
2016), which learns feature representations and
cluster assignments using deep neural networks.
DEC learns a mapping from the data space to a
lower-dimensional feature space while iteratively
optimizing a clustering objective. The self-taught
convolutional neural network (STC2) framework
proposed by Xu et al. (2017) uses a dimensional-
ity reduction technique to generate auxiliary tar-
gets for a neural network architecture. A convo-
lutional neural network (CNN) learns feature rep-
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Figure 1: Short text clustering using SIF embedding,
an autoencoder architecture and self-training.

resentations in order to reconstruct these auxiliary
targets. Trained representations from the CNN are
clustered using the k-means algorithm. Two re-
cent surveys provide an overview of research on
deep clustering methods (Aljalbout et al., 2018;
Min et al., 2018).

Similar to Xie et al. (2016), we follow a multi-
phase approach and train a neural network (which
we will refer to as the encoder) to transform em-
beddings to a latent space before clustering. How-
ever, we apply two crucial modifications. As op-
posed to CNN-based encoders (Xu et al., 2017),
we propose the use of Smooth Inverse Frequency
(SIF) embeddings (Arora et al., 2017) in order to
simplify and make clustering more efficient while
maintaining performance.

During the second stage of clustering, we ap-
ply self-training using soft cluster assigments to
fine-tune the encoder before applying a final clus-
tering. We describe our methodology in more de-
tail in Section 2. In Section 3, we evaluate our
method using three short text datasets, measuring
for clustering accuracy and normalized mutual in-
formation. Our model matches or produces better
results compared to more sophisticated neural net-
work architectures.

2 Methodology

Our model for short text clustering includes three
steps: (1) Short texts are embedded using SIF em-
beddings (Section 2.1); (2) During a pre-training
phase, a deep autoencoder is applied to encode
and reconstruct the short text SIF embeddings
(Section 2.2); (3) In a self-training phase, we use
soft cluster assignments as an auxiliary target dis-
tribution, and jointly fine-tune the encoder weights
and the clustering assignments (Section 2.3). The
described setup is illustrated in Figure 1.

2.1 SIF Embedding

We apply a relatively simple and yet effective
strategy for embedding short texts, called Smooth
Inverse Frequency (SIF) embeddings. For SIF em-
bedding, first, a weighted average of pre-trained
word embeddings is computed. The contribution
of each word is calculated as a

a+p(w) with a be-
ing a hyperparameter and p(w) being the empir-
ical word frequency in the text corpus. SIF em-
beddings are then produced by computing the first
principal component of all the resulting vectors
and removing it from the weighted embeddings.

2.2 Autoencoder

The parameters of the encoder network are initial-
ized using a deep autoencoder architecture such
as the one used by Hinton and Salakhutdinov
(2006). The mean squared error is used to mea-
sure reconstruction loss after the encoded embed-
dings are decoded by the decoder subnetwork (see
Fig. 1). This non-clustering loss is independent
of the clustering algorithm and controls preserva-
tion of the original text representations. Yang et al.
(2017) demonstrated that the absence of such a
non-clustering loss can lead to worse representa-
tions, or trivial solutions where the clusters all col-
lapse into a single representation.

2.3 Self-Training

After pre-training using the autoencoder architec-
ture, we obtain an initial estimate of the non-
linear mapping from the SIF embedding to a low-
dimensional representation, on which a cluster al-
gorithm is applied. Next, we improve clustering
using a second self-training phase: we assign ini-
tial cluster centroids after which we alternate be-
tween two steps: (i) first, the probability of as-
signing a data point to each cluster is computed;
(ii) second, an auxiliary probability distribution
is calculated and used as target for the encoder
network. Network weights and cluster centroids
are updated iteratively until a stopping criterion is
met.

For Step (i), we compute a soft cluster assign-
ment for each data point. Maaten and Hinton
(2008) propose the Student’s t-distribution Q with
a single degree of freedom to measure the similar-
ity between embedded points zi and centroids µj :

qij =
(1 + ‖zi − µj‖2)−1

∑
j′
(1 + ‖zi − µj′‖2)−1

, (1)
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in which qij can be interpreted as the probability
of assigning sample i to cluster j. Then qij can be
used as a soft assignment of embeddings to cen-
troids. The encoder is then fine-tuned to match
this soft assignment qi to a target distribution pj .

For Step (ii), as Xie et al. (2016), we use an
auxiliary target distribution P which has “stricter”
probabilities compared to the similarity score qij ,
with the aim to improve cluster purity and put
more emphasis on data points assigned with high
confidence. This prevents large clusters from dis-
torting the hidden feature space. The probabilities
pij in the proposed distribution P are calculated
as:

pij =

q2ij/
∑
i′
qi′j

∑
j′
(q2ij′/

∑
i′
qi′j′)

, (2)

in which the squared summation terms q2ij are nor-
malized by the soft cluster frequencies (

∑
i′
qi′j).

The KL-divergence between the two probabil-
ity distributions P and Q is then used as training
objective, i.e., the training loss L is defined as:

L = KL(P‖Q) =
∑

i

∑

j

pij log
pij
qij
. (3)

The strategy outlined above can be seen as a form
of self-supervision (Nigam and Ghani, 2000).
Centroids of a standard clustering algorithm (e.g.,
k-means) are used to intialize the weights of the
clustering layer, after which high confidence pre-
dictions are used to fine-tune the encoder and cen-
troids. After convergence of this procedure, short
texts are encoded and final cluster assignments are
made using k-means.

3 Experimental Results

After describing the datasets (Section 3.1) and the
experiment design (Section 3.2), we will present
the results of these experiments (Section 3.3).

3.1 Data

We replicate the test setting used by Xu et al.
(2017) and evaluate our model on three datasets
for short text clustering: (1) SearchSnippets:
a text collection comprising Web search snip-
pets categorized in 8 different topics (Phan et al.,
2008). (2) Stackoverflow: a collection of posts

from question and answer site stackoverflow, pub-
lished as part of a Kaggle challenge.1 This sub-
set contains question titles from 20 different cate-
gories selected by Xu et al. (2017). (3) Biomed-
ical, a snapshot of one year of PubMed data dis-
tributed by BioASQ for evaluation of large-scale
online biomedical semantic indexing.2 Table 2
provides an overview of the main characteristics
of the presented short text datasets.

3.2 Experimental Setup

We compare our method to baselines for STC in-
cluding clustering of TF and TF-IDF representa-
tions, Skip-thought Vectors (Kiros et al., 2015)
and the best reported STC2 model by Xu et al.
(2017). Following (Van Der Maaten, 2009; Xie
et al., 2016), we set sizes of hidden layers to
d:500:500:2000:20 for all datasets, where d is the
short text embedding dimension for all datasets.
We used pre-trained word2vec embeddings3 with
fixed α = 0.1 value for all corpora. We set the
batch size to 64 and pre-trained the autoencoder
for 15 epochs. We initialized stochastic gradient
descent with a learning rate of 0.01 and momen-
tum value of 0.9.

During experiments, the choice of initial cen-
troids had considerable impact on clustering per-
formance when applying the k-means algorithm.
To reduce this influence of initialization, we
restarted k-means 100 times with different initial
centroids, as Huang et al. (2014); Xu et al. (2017),
and selected the best centroids, which obtained
the lowest sum of squared distances of samples to
their closest cluster center. Similar to Xu et al.
(2017), results are averaged over 5 trials and we
also report the standard deviation on the scores.

3.3 Results and Discussion

We evaluate clustering performance based on the
correspondence between clusters and partitions as
per the ground truth class labels assigned to each
of the short texts. We report two widely used per-
formance metrics, the clustering accuracy (ACC)
and the normalized mutual information (NMI)
(Huang et al., 2014; Xu et al., 2017).

NMI measures the information shared between
the predicted assignments A, and the ground truth

1https://www.kaggle.com/c/predict-
closed-questions-on-stack-overflow/

2http://participants-area.bioasq.org
3Available from https://github.com/jacoxu/

STC2
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SearchSnippets Stackoverflow Biomedical

Method ACC NMI ACC NMI ACC NMI

TF 24.7±2.22 9.0±2.30 13.5±2.18 7.8±2.56 15.2±1.78 9.4±2.04
TF-IDF 33.8±3.92 21.4±4.35 20.3±3.95 15.6±4.68 28.0±2.83 25.4±3.23
Skip-Thought 33.6±1.95 13.8±0.78 9.3±0.24 2.7±0.34 16.3±0.33 10.7±0.46
SIF 53.4±1.86 36.9±0.90 30.5±0.28 28.9±0.17 33.7±2.35 30.1±0.64

STC2 77.0±4.1 62.9±1.7 51.14±2.9 49.0±1.5 43.0±1.3 38.1±0.5
SIF + Aut., Self-Train. 77.1±1.1 56.7±1.0 59.8±1.9 54.8±1.0 54.8±2.3 47.1±0.8

Table 1: Clustering results (accuracy ACC and normalized mutal information NMI) for three short text collections
using various representations and self-training methods. STC2 and our method involve additional fine-tuning of
encoders, others apply k-means directly on short text representations. Performance results are average and standard
deviations over 5 runs.

Dataset C N T |V |
SearchSnippets 8 12.3k 17.9 31k
StackOverflow 20 20k 8.3 23k

Biomedical 20 20k 12.9 19k

Table 2: Statistics for the short text clustering datasets
as used by Xu et al. (2017): number of classes (C),
number of short texts (N ), average number of tokens
per text (T ) and vocabulary size (|V |).

assignments B, and is defined as

NMI(A,B) =
I(A,B)√
H(A)H(B)

, (4)

where I is the mutual information andH is the en-
tropy. When data is partitioned perfectly, the NMI
score is 1, and when A and B are independent, it
becomes 0.

The clustering accuracy is defined as

ACC =

∑N
i=1 δ(yi = map(ci))

N
, (5)

where δ() is an indicator function, ci is the clus-
tering label for xi, map() transforms the clustering
label ci to its group label by the Hungarian algo-
rithm (Papadimitriou and Steiglitz, 1982), and yi
is the true group label of xi. Results for NMI and
accuracy of existing work and the presented model
are shown in Table 1.

While generic, low-dimensional representations
such as Skip-Thought or SIF embeddings have
demonstrated to be beneficial for NLP on many
tasks, for STC, additional fine-tuning and self-
training leads to improved cluster quality. The
evaluation results show the superiority of our ap-
proach, compared to the STC2 model, on all but
one of the metrics.

TfIdf + KMeans SIF + KMeans Our model

Figure 2: Two dimensional representations of Search-
Snippets short texts before application of k-means.
Colors indicate the C = 8 different ground truth labels.

Qualitatively, the improved cluster quality is
also visually apparent in Figure 2, which shows
a two-dimensional t-SNE (Maaten and Hinton,
2008) representation of the SearchSnippets short
texts before clustering.

The source code of our model, implemented us-
ing Tensorflow, is publicly available to encourage
further research on STC.4

4 Conclusion

We proposed a method for clustering of short texts
using sentence embeddings and a multi-phase ap-
proach, starting from unsupervised SIF embed-
dings for the short texts. Our STC model then
adopts an autoencoder architecture which is fine-
tuned for clustering using self-training. Our em-
pirical evaluation on three short text clustering
datasets demonstrates resulting accuracies ranging
from at least as good up to 12 percentage points,
compared to the state-of-the-art STC2 method.
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Abstract

Word-based embedding approaches such as
Word2Vec capture the meaning of words and
relations between them, particularly well when
trained with large text collections; however,
they fail to do so with small datasets. Exten-
sions such as fastText reduce the amount of
data needed slightly, however, the joint task
of learning meaningful morphology, syntac-
tic and semantic representations still requires
a lot of data. In this paper, we introduce a
new approach to warm-start embedding mod-
els with morphological information, in order
to reduce training time and enhance their per-
formance. We use word embeddings gener-
ated using both word2vec and fastText mod-
els and enrich them with morphological infor-
mation of words, derived from kernel princi-
pal component analysis (KPCA) of word sim-
ilarity matrices. This can be seen as explic-
itly feeding the network morphological simi-
larities and letting it learn semantic and syn-
tactic similarities. Evaluating our models on
word similarity and analogy tasks in English
and German, we find that they not only achieve
higher accuracies than the original skip-gram
and fastText models but also require signifi-
cantly less training data and time. Another
benefit of our approach is that it is capable of
generating a high-quality representation of in-
frequent words as, for example, found in very
recent news articles with rapidly changing vo-
cabularies. Lastly, we evaluate the different
models on a downstream sentence classifica-
tion task in which a CNN model is initialized
with our embeddings and find promising re-
sults.

1 Introduction

Continuous vector representations of words
learned from unstructured text corpora are an ef-
fective way of capturing semantic relationships
among words. Approaches to computing word
embeddings are typically based on the context

of words, their morphemes, or corpus-wide co-
occurrence statistics. As of this writing, arguably
the most popular approaches are the Word2Vec
skip-gram model (Mikolov et al., 2013a) and the
fastText model (Bojanowski et al., 2017). The
skip-gram model generates embeddings based on
windowed word contexts. While it incorporates
semantic information, it ignores word morphol-
ogy. Yet, the latter might be beneficial espe-
cially for morphologically rich languages such as
German and Turkish. Bojanowski et al. (2017)
therefore introduced fastText which builds on the
Word2Vec approach but also incorporates mor-
phology by considering sub-word units and rep-
resenting a word by a sum of its character n-grams
as well as the word itself.

To learn high-quality embeddings, Word2Vec
requires huge text corpora with billions of words
and still fails to generate high-quality vector rep-
resentations for less frequent or unknown words.
Although fastText improves the results by incor-
porating subword information, it still fails in many
cases. This is particularly evident in the news do-
main where frequently new words such as names
occur over time which, in turn, impacts the per-
formance of downstream applications. In this pa-
per, we therefore propose an alternative approach
which not only makes use of morphological in-
formation but also performs well when trained on
smaller datasets or domains with rapidly changing
vocabulary. Research questions we answer in this
paper are:

1. Can high-quality word embeddings be
trained on small datasets?

2. Can high-quality embeddings be generated
for infrequent words?

3. Can the use of morphological information in-
crease the efficiency of learning semantic and
syntactic similarities?
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cushitic

couscous

sardinian

austroasiatic

hassaniya

(a) Skip-gram

linguistically

linguistic

artistically

linguistica

calling

recalling

(b) KPCA skip-gram

linguistically

artistically

stylistically

linguistica

simplistically

altruistically

(c) FastText

linguisticallylinguistic

distinguishable

linguists

distinguishes

distinguishing

(d) KPCA fastText

Figure 1: Visualization of 5-nearest neighbors for the word “Linguistically”.

2 Related work

Mikolov et al. (2013a) proposed log-bilinear mod-
els to learn vector representations of words from
the context in which they appear in large corpora.
These are the Continuous Bag-of-Words Model
(CBOW) and the Continuous Skip-gram Model
(skip-gram) which predict target words from
source context words and source context words
from target words, respectively. An extension pro-
posed by Mnih and Kavukcuoglu (2013) involves
training lightweight log-bilinear language models
with noise-contrastive estimation and achieves re-
sults comparable to the best previous models with
one quarter of the training data and in less com-
puting time.

There are some recent works which try
to incorporate morphological structures into the
computation of embeddings. Soricut and Och

(2015) learn vector representation of morpholog-
ical transformations and are able to obtain repre-
sentations for unseen words. Cotterell et al. (2016)
presented a morpheme-based post-processor for
word embeddings. They proposed a Gaussian
graphical model which can be extended to contin-
uous representations for unknown words as well
as helps in smoothing the representations of the
observed words in the training dataset. Bhatia
et al. (2016) proposed a new unified probabilis-
tic framework in which they combine morpholog-
ical and distributional information. The word em-
beddings act as a latent variable for which mor-
phological information provides a prior distribu-
tion. This in turn condition a likelihood function
over an observed dataset. Bojanowski et al. (2017)
proposed fastText, an extension of the skip-gram
model, which learns word representations by in-
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cluding sub-word information. This is achieved by
not only representing words with vectors but also
the subword parts they consist of. Word vector
representations are finally built as the sum of their
sub-word vectors and their own representation.

3 KPCA-based skip-gram and fastText
models

In this section, we propose a general extension
to word embedding methods which we evaluate
on the skip-gram model as well as on the fast-
Text model. We propose pre-training embeddings
with a kernel PCA computed on word similarity
matrices, generated using a string similarity func-
tion, for words in a vocabulary and then inject-
ing the pre-trained embeddings in the Word2Vec
and fastText embeddings by initializing them with
the KPCA word and subword embeddings. This
seamlessly incorporates sub-word structures in
Word2Vec and yields a better starting point for
fastText training. It is especially useful for mor-
phologically rich languages because their seman-
tically similar words often share some common
morphemes such as roots, affixes, and syllables.

3.1 Kernel PCA on string similarities

Embedding words according to morphological
similarities can be seen as a clustering problem
in a higher dimensional feature space which can
be tackled using Kernel PCA (Schölkopf et al.,
1997), a nonlinear form of principal component
analysis. Suppose a vocabulary V of words wi, a
string similarity measure S (e.g. the n-gram simi-
larity (Brito et al., 2017)), and a non-linear kernel
function K (e.g. the Gaussian) to be given. This
allows us to compute a |V | × |V | word similarity
matrix K where

Kij = K
(
S(wi, wj)

)
(1)

Centering this kernel matrix (Schölkopf et al.,
1997) yields a feature space representation of
words in V , because column vector ki of K can
be seen as a |V |-dimensional representation of wi.
Performing PCA in this feature space then allows
for selecting the first d < |V | nonlinear principal
components vi which, in turn, allow for project-
ing word vectors into lower dimensional spaces.
Using projection matrix,

P =

[
v1

λ1
, ...,

vd

λd

]
(2)

generated by selecting d eigenvectors v1 to vd

corresponding to the highest eigenvalues, λ1 to λd,
the d-dimensional projections are

ei = Pᵀki. (3)

3.2 Models with KPCA embeddings

Computing Kernel PCA for a large vocabulary is
computationally demanding. We thus restrict our
vocabulary V to contain only the most frequent
words of a text corpus. For any new or out of vo-
cabulary word snew not contained in V , we can
compute its kernel vector

knew = K
(
S(snew, V )

)
(4)

and obtain a lower dimensional representation as

enew = Pᵀknew. (5)

Note that word embeddings computed
this way only encode morphological similar-
ity. To incorporate semantic similarities, we
initialize Word2Vec and fastText models with
the pre-trained KPCA embeddings. We train
the Word2Vec skip-gram model with negative
sampling (Mikolov et al., 2013b) on our morpho-
logical embeddings using the C implementation
of Word2vec package1.

To initialize the fastText model with morpho-
logical embeddings, we also compute the KPCA
vectors for the subword units in the dictionary,
as fastText also has vector representations for
character n-grams contained in words. We train
the fastText model initialized with our morpholog-
ical embeddings using the C++ implementation
of fastText 2. After training both the models,
we obtain embeddings encoded with semantic,
syntactic and morphological similarities whose
practical merits we evaluate in the next section.

4 Experimental Results

To evaluate our models’ performance when trained
on datasets of different sizes, we consider English
and German datasets such as Text8 3, 20 News

1https://code.google.com/p/word2vec/
2https://github.com/facebookresearch/

fastText/
3http://mattmahoney.net/dc/text8.zip
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Dataset name Language Corpus size (words) Vocab Size (words)

20 Newsgroups English 1 million ≈ 19, 000

Text8 English 10 million ≈ 70, 000

English Wiki 2016 English 1,192 million ≈ 330, 000

German news 2013 German 183 million ≈ 247, 000

Table 1: Details of the datasets used for evaluation.

groups 4, English Wiki 2016 and German news
2013 5 for training. Each dataset contains articles
crawled from news websites or Wikipedia. These
raw text corpora contain a large amount of irrele-
vant text and are pre-processed using a script by
Mahoney6. In Table 1, we list all the datasets that
we have used to train the models.

4.1 Baseline

One of our main results is the observation that
the KPCA fastText model and the KPCA skip-
gram model generate high-quality word embed-
dings even when trained only on small datasets
when compared to fastText or skip-gram model
respectively. To compare how well our models
perform in comparison to the original skip-gram
model and fastText model, we consider both of
them as the baselines in all our experiments and
use the same parameters and datasets for generat-
ing and evaluating embeddings for all models.

4.2 Evaluation

We evaluate our models using intrinsic evaluation
tasks which assess how well the vectors capture
meanings of and relationships between words. In
particular, we evaluate all the models with respect
to

1. Word similarity tasks which include finding a
word’s nearest neighbors.

2. Word analogy tasks which include calculat-
ing the semantic and the syntactic similarities
between words and their relations.

3. Performance in a downstream application
which illustrates how well the embeddings

4http://qwone.com/˜jason/
20Newsgroups/

5http://www.statmt.org/wmt14/
training-monolingual-news-crawl/news.
2013.de.shuffled.gz

6http://mattmahoney.net/dc/textdata.
html

work for subsequent processing steps such as
a sentence classification task (Kim, 2014).

4.3 Word similarity Evaluation
Word similarity tasks evaluate word embeddings
in terms of their k-nearest neighbors. For selected
words, we show nearest neighbors according to
cosine similarity for vectors trained using the pro-
posed models as well as the baseline models. Here
we illustrate how the models performed for fre-
quent as well as for infrequent words. Table 2
presents examples for all the models obtained af-
ter being trained for an epoch on the small Text8
dataset.

The table illustrates that for the frequent
words, all the models learn a good representation
and are able to produce relevant nearest neigh-
bors. For the infrequent words, the skip-gram
did not learn a very good representation as there
are not enough examples for the word to learn
from. In these cases the nearest neighbor of
the skip-gram model are not very meaningful,
e.g. it places firecracker close to “prochnow”,
while the KPCA fastText model places it closer to
“cracker” and “fire” related words. Since the fast-
Text model uses sub-word information, it achieves
better performance at this task compared to the
skip-gram model. It finds meaningful neighbors
for “placental”, however it fails for words such
as “cruel”. KPCA skip-gram gets a warm start
with the morphological information learned from
KPCA, which helps in learning a better represen-
tation for scarce words, thus producing better k-
nearest neighbors for words such as “cruel”.

When we compare KPCA skip-gram with
KPCA fastText, we observe that KPCA fastText
generally generates better neighbors. We assume
this is because of the fact that it benefits from the
fastText approach of jointly refining subword and
word representations. Comparing fastText with
the better initialized KPCA fastText model, KPCA
produces decidedly better neighbors, especially
for “scrubbing”, “firecracker”, “linguistically” and
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Word (frequency) Model k-nearest neighbors (sorted by similarity)

three (114,775)

Skip-gram four, five, seven, eight, runways

KPCA skip-gram four, seven, five, eight, nine

fastText four, five, seven, zero, eight

KPCA fastText seven, five, four, eight, nine

history (12,623)

Skip-gram overview, timeline, prehistory, origins, beginnings

KPCA skip-gram article, origins, pamphlets, references, offshoot

fastText prehistory, historique, historica, historiques, historiography

KPCA fastText historical, prehistory, histories, historiography, historic

april (3,069)

Skip-gram june, march, august, february, november

KPCA skip-gram august, march, june, february, december

fastText february, january, october, september, november

KPCA fastText february, august, june, october, november

biblical (703)

Skip-gram talmud, josephus, apocrypha, tanakh, commentaries

KPCA skip-gram judaica, mythical, mexica, metaphysical, micah

fastText evangelical, biblically, bibliographical, noncanonical, mythological

KPCA fastText bible, bibles, bibl, testament, biblically

moscow (622)

Skip-gram warsaw, armistice, versailles, hostage, daoud

KPCA skip-gram kabul, prague, beirut, bonn, cpsu

fastText mosby, mokhehle, moonwalks, mocha, rsfsr

KPCA fastText borisovich, soviet, helsinki, denisovich, warsaw

cruel (140)

Skip-gram injustice, urge, fears, zeal, appease

KPCA skip-gram cruelty, foes, lawful, imbued, idols

fastText cruzi, crusoe, crux, cruijff, duel

KPCA fastText cruelty, cruelly, ruelle, cruzi, duel

linguistically (46)

Skip-gram cushitic, hassaniya, couscous, austroasiatic, sardinian

KPCA skip-gram linguistic, recalling, artistically, calling, linguistics

fastText simplistically, altruistically, stylistically, artistically ,linguistica

KPCA fastText linguistic, linguists, distinguishes, distinguishing, distinguishable

placental (30)

Skip-gram intestine, condense, spikes, greasy, sideways

KPCA skip-gram placenta, centaurus, labiodental, centaur, centaurs

fastText placentals, placenta, dental, placement, placement, segmental

KPCA fastText placentals, placenta, parental, placement, concentrates

firecracker (5)

Skip-gram prochnow, caff, gwen, hillis, horovitz

KPCA skip-gram mccracken, racked, wracked, rackets, racket

fastText cracker, nutcracker, acker, thacker, skywalker

KPCA fastText cracker, crackers, fireplace, firestrom, firewall

scrubbing (5)

Skip-gram underpowered, transceivers, refineries, heliport, gasification

KPCA skip-gram ingot, ingots, xing, mcing, plying

fastText scrying, dubbing, rubbing, ebing, screwing

KPCA fastText rubbing, clubbing, scrubbed, scraping, scrying

Table 2: The k = 5-nearest neighbors of word embeddings in R128 , trained on the Text8 dataset.

“cruel”. In figure 1, we can visualize the t-SNE 2-
D representation of the nearest neighbors for the
word “linguistically”.
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Epoch No. Model Total Semantic Syntactic

1

Skip-gram 7.84% 3.92% 11.24%

KPCA skip-gram 15.74% 2.96% 26.71%

fastText 36.89% 0.89% 67.80%

KPCA fastText 38.04% 1.12% 69.76%

2

Skip-gram 17.09% 9.59% 23.50%

KPCA skip-gram 21.14% 7.26% 33.07%

fastText 41.19% 1.60% 75.19%

KPCA fastText 40.48% 2.10% 73.43%

5

Skip-gram 24.21% 19.28% 28.45%

KPCA skip-gram 26.20% 15.56% 35.34%

fastText 43.60% 5.51% 76.31%

KPCA fastText 43.42% 7.37% 74.39%

10

Skip-gram 26.68% 24.61% 28.45%

KPCA skip-gram 28.65% 22.22% 34.18%

fastText 44.49% 12.10% 71.75%

KPCA fastText 44.68% 13.17% 72.29%

Table 3: Analogy accuracies of embeddings in R128 trained for different epochs on Text8 dataset.

Epoch No. Model Total Semantic Syntactic

1

Skip-gram 0.18% 0.20% 0.17%

KPCA skip-gram 15.47% 0.66% 19.80%

fastText 3.07% 0.26% 3.89%

KPCA fastText 33.66% 0.79% 43.26.%

2

Skip-gram 0.99% 1.26% 0.91%

KPCA skip-gram 14.83% 1.65% 18.68%

fastText 28.52% 0.33% 36.76%

KPCA fastText 45.85% 1.19% 58.91%

3

Skip-gram 0.96% 1.46% 0.81%

KPCA skip-gram 14.07% 1.92% 17.62%

fastText 44.84% 0.79% 57.71%

KPCA fastText 47.44% 1.39% 60.90%

Table 4: Analogy accuracies of embeddings in R128

trained for different epochs on 20 Newsgroups dataset.

4.4 Word Analogy Evaluation

Pre-trained word vectors are available for a dataset
of 100 billion words from Google News. Mikolov
et al. (2013a) observed that, when word vectors are
trained on such a large dataset, they are able to an-
swer very subtle relationships between words. Yet,
for the news data or for a small dataset such re-
sults cannot be achieved. Warm-starting the mod-
els with our KPCA embeddings, however, yields
good performance in such settings, too.

To assess accuracies in the word analogy
task, we use a comprehensive test set provided
by Mikolov et al. (2013a). This test consists of
semantic and syntactic similarity questions which
include relationships like adjective-to-adverb, cur-
rency, plural-verbs, city-in-state, comparative, su-
perlative relationships, and others. A question is
assumed to be correctly answered only if the clos-
est word to the vector is exactly the same as the
correct word in the question; synonyms are con-
sidered as mistakes. In order to use this evalua-
tion to compare our models’ results to those of the
skip-gram and the fastText models, we train the
models on the different datasets shown in Table 1.
Results are reported in Tables 3, 4, 5 and 6.

A comparison of 300-dimensional and 128-
dimensional embeddings on the analogy tasks
on the text8 and 20-Newsgroups datasets showed
that all models (including baselines) perform best
when we picked 128-dimensional embeddings.
For the sake of simplicity we used 128-dimensions
in all tasks. From Table 4, it is evident that our
KPCA fastText model outperforms the skip-gram
as well as the fastText model when trained on a
small dataset. KPCA skip-gram as well as KPCA
fastText models have better accuracies for both se-
mantic and syntactic questions in the initial epochs
compared to their cold-start counterparts. One
question arising in this context is whether the skip-
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gram or the fastText models can also learn from
smaller datasets. The answer for the 20 News-
group as well as for the text8 datasets is “yes”, but
only if they are trained for several epochs.

The results for the 20 Newsgroups dataset
in Table 4 also show that the skip-gram models
completely fail to learn analogies on this dataset.
The KPCA fastText embeddings benefit from their
warm-start and show a quicker convergence rate.
We make the following observations from the ac-
curacies obtained after each epoch of training.
During the 1st epoch, the skip-gram and the fast-
Text model do not perform well. However, after
the 2nd epoch, the fastText model starts perform-
ing better on the syntactic questions. Meanwhile
KPCA skip-gram and KPCA fastText models still
achieve higher accuracies than the respective skip-
gram and fastText models. Hence, considering ac-
curacies from the initial epochs, we can conclude
that training of our model converges faster than the
training of the fastText model and the skip-gram
model.

From Table 3, we observe that the skip-gram
model always seems to perform better on the se-
mantic questions but when we compare these ac-
curacies with the nearest neighbors results from
Table 2, it can be observed that although KPCA
models seem to work badly on semantic tasks,
they generate better k-nearest neighbors than the
respective skip-gram and fastText models.

We also compare the accuracies achieved by
the models when trained for one epoch on a large
data set, namely English Wikipedia dataset. The
results in Table 5, illustrate the performance of the
different models when training them on a large
training dataset size. When compared to fast-
Text, KPCA skip-gram performs better on seman-
tic questions, but worse on syntactic questions.
Noticeably KPCA fastText performs better on se-
mantic questions than all the other models. How-
ever plain fastText outperforms it on the syntactic
questions. The overall accuracy of fastText is also
slightly higher than for KPCA fastText model.

We also report accuracies for the analogy
task when the models are trained on the Ger-
man news dataset for morphologically rich Ger-
man language. We use the German version of the
semantic/syntactic analogy dataset, introduced by
(Köper et al., 2015) for evaluation. Table 6 shows
how different models perform on the analogies
tasks. We note that morphological information

Epochs Model Total Sem Syn

1

Skip-gram 70.95% 85.29% 66.67%

KPCA skip-gram 75.00% 85.29% 71.93%

fastText 81.43% 82.35% 80.46%

KPCA fastText 80.41% 88.24% 78.07%

Table 5: Analogy accuracies of embeddings in R128

trained for one epoch on English Wiki 2016 dataset.

Epochs Model Total Sem Syn

1

Skip-gram 34.43% 35.89% 31.69%

KPCA skip-gram 35.71% 37.72% 31.94%

fastText 29.56% 14.34% 58.20%

KPCA fastText 30.15% 14.54% 59.56%

Table 6: Analogy accuracies of embeddings in R128

trained for one epoch on German news 2012 dataset.

Dataset Model Accuracies

20 Newsgroups

Skip-gram 72.82%

KPCA Skip-gram 73.57%

fastText 72.07%

KPCA fastText 72.73%

english Wiki 2016

Skip-gram 73.90%

KPCA Skip-gram 74.56%

fastText 73.96%

KPCA fastText 74.09%

Table 7: Sentence classification task trained using pre-
trained embeddings obtained from different models af-
ter 10 epochs of training.

significantly improves the syntactic tasks when we
compare KPCA fastText and fastText with KPCA
skip-gram and skip-gram. While the semantic ac-
curacy degrades for both KPCA fastText and fast-
Text. Initializing the skip-gram and fastText with
KPCA embeddings has improved the performance
of both the models. The KPCA skip-gram model
shows the overall best performance. This shows
that the initialization of the models with morpho-
logical information, is beneficial for the German
language as well.

4.5 Evaluation of performance on
downstream applications

Finally, we investigate how well the embeddings
obtained from the different models and different
datasets perform on a downstream task in a neu-
ral network architecture. We choose the convo-
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lutional neural network proposed in (Kim, 2014)
and evaluate it with the embeddings in a sentence
classification task. We initialize the CNN with the
embeddings obtained from the different embed-
ding models and keep the embeddings static dur-
ing training. Initializing the word vectors with the
pre-trained word embeddings instead of random
embeddings improves the performance as noted by
(Collobert et al., 2011) and (Iyyer et al., 2014).

In our experiment, the classification task is
a sentiment classification task, i.e. detecting
whether reviews are positive or negative. The
dataset used for it, consists of movie reviews7 with
one sentence per review. We use embeddings gen-
erated by training the embedding models on the 20
Newsgroups and English Wikipedia datasets. The
CNN network is trained for 10 epochs.

In Table 7, we list the accuracies for the
model trained with different embeddings obtained
from the two datasets. In both cases, the model ini-
tialized with embeddings generated using KPCA
skip-gram model and the KPCA fastText outper-
form the models initialized with the respective
cold-start embeddings, albeit with a small margin.
The models initialized with the KPCA skip-gram
model achieve the best results in both cases.

5 Conclusion

In this paper, we explored a simple method to
improve models for computing word embeddings
and evaluated it with the popular skip-gram and
fastText models.

Our approach relies on string similarity ma-
trices computed from small vocabularies which, in
a first step, are subjected to kernel PCA (KPCA)
in order to generate non-linear, morphologically
informed word embeddings. In a second step, the
KPCA-based vector representations of words are
used as input to the skip-gram model in order to
obtain embeddings that also account for word con-
texts.

In practical experiments, we evaluated the
quality of our embeddings using intrinsic mea-
sures such as word similarity and word anal-
ogy. In our experiments the KPCA skip-gram
and KPCA fastText were found to outperform the
original continuous skip-gram and fastText model.
In particular, we found that the continuous skip-
gram model can learn similarity among words

7http://www.cs.cornell.edu/people/
pabo/movie-review-data/

only when it has seen a sufficiently large num-
ber of examples. When feeding the models with
morphologically informed vector representations
of words, they seem to be able to learn from a
better starting point when computing semantically
informed embeddings. Using KPCA fastText or
KPCA skip-gram model, we found that it is possi-
ble to obtain high-quality word vectors even when
training with small datasets and fewer epochs.

6 Future Work

Future work concerns deeper analysis of how to
choose words in the vocabulary to construct the
projection matrix used to generate Kernel PCA
embeddings. We would like to explore different
string similarity functions which would help in
creating better clusters of the similar words.
We would also like to extend our experiments to
different embeddings such as GloVe as well as to
further downstream tasks such as Named Entity
Recognition or Relation Extraction.
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Abstract
Since their inception, encoder-decoder models
have successfully been applied to a wide array
of problems in computational linguistics. The
most recent successes are predominantly due
to the use of different variations of attention
mechanisms, but their cognitive plausibility is
questionable. In particular, because past repre-
sentations can be revisited at any point in time,
attention-centric methods seem to lack an in-
centive to build up incrementally more infor-
mative representations of incoming sentences.
This way of processing stands in stark contrast
with the way in which humans are believed to
process language: continuously and rapidly in-
tegrating new information as it is encountered.
In this work, we propose three novel metrics to
assess the behavior of RNNs with and without
an attention mechanism and identify key dif-
ferences in the way the different model types
process sentences.

1 Introduction

Incrementality – that is, building up representa-
tions “as rapidly as possible as the input is encoun-
tered” (Christiansen and Chater, 2016) – is con-
sidered one of the key ingredients for humans to
process language efficiently and effectively.

Christiansen and Chater (2016) conjecture how
this trait is realized in human cognition by iden-
tifying several components which either make up
or are implications of their hypothesized Now-
or-Never bottleneck, a set of fundamental con-
straints on human language processing, which in-
clude a limited amount of available memory and
time pressure. First of all, one of the implications
of the now-or-never bottleneck is anticipation, im-
plemented by a mechanism called predictive pro-
cessing. As humans have to process sequences of
inputs fast, they already try to anticipate the next
element before it is being uttered. This is hypoth-
esized to be the reason why people struggle with

so-called garden path sentences like “The horse
race past the barn fell”, where the last word en-
countered, “fell”, goes against the representation
of the sentence built up until this point. Secondly,
another strategy being employed by humans in
processing language seems to be eager process-
ing: the cognitive system encodes new input into
“rich” representations as fast as possible. These
are build up in chunks and then processed into
more and more abstract representations, an oper-
ation Christiansen and Chater (2016) call Chunk-
and-pass processing.

In this paper, we aim to gain a better insight
into the inner workings of recurrent models with
respect to incrementality while taking inspiration
from and drawing parallels to this psycholinguis-
tic perspective. To ensure a successful processing
of language, the human brain seems to be forced
to employ an encoding scheme that seems highly
reminiscent of the encoder in today’s encoder-
decoder architectures. Here, we look at differ-
ences between a recurrent-based encoder-decoder
model with and without attention. We analyze the
two model variants when tasked with a navigation
instruction dataset designed to assess the compo-
sitional abilities of sequence-to-sequence models
(Lake and Baroni, 2018).

The key contributions of this work can be sum-
marized as follows:

• We introduce three new metrics for incre-
mentality that help to understand the way that
recurrent-based encoder-decoder models en-
code information;

• We conduct an in-depth analysis of how in-
crementally recurrent-based encoder-decoder
models with and without attention encode se-
quential information;

• We confirm existing intuitions about
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attention-based recurrent models but also
highlight some new aspects that explain their
superiority over most attention-less recurrent
models.

2 Related Work

Sequence-to-Sequence models that rely partly or
fully on attention have gained much popularity
in recent years (Bahdanau et al. (2015), Vaswani
et al. (2017)). Although this concept can be re-
lated to the prioritisation of information in the hu-
man visual cortex (Hassabis et al., 2017), it seems
contrary to the incremental processing of informa-
tion in a language context, as for instance recently
shown empirically for the understanding of con-
junctive generic sentences (Tessler et al., 2019).

In machine learning, the idea of incremental-
ity has already played a role in several problem
statements, such as inferring the tree structure of
a sentence (Jacob et al., 2018), parsing (Köhn and
Menzel, 2014), or in other problems that are nat-
urally equipped with time constraints like real-
time neural machine translation (Neubig et al.,
2017; Dalvi et al., 2018a), and speech recogni-
tion (Baumann et al., 2009; Jaitly et al., 2016;
Graves, 2012). Other approaches try to encourage
incremental behavior implictly by modifying the
model architecture or the training objective: Guan
et al. (2018) introduce an encoder with an incre-
mental self-attention scheme for story generation.
Wang (2019) try to encourage a more incremental
attention behaviour through masking for text-to-
speech, while Hupkes et al. (2018a) guide atten-
tion by penalizing deviation from a target pattern.

The significance of the encoding process in
sequence-to-sequence models has also been stud-
ied extensively by Conneau et al. (2018). Pro-
posals exploring how to improve the resulting
approaches include adding additional loss terms
(Serdyuk et al., 2018) or a second decoder (Jiang
and Bansal, 2018; Korrel et al., 2019).

3 Metrics

In this section, we present three novel met-
rics called Diagnostic Classifier Accuracy (Sec-
tion 3.1), Integration Ratio (Section 3.2) and Rep-
resentational Similarity (Section 3.3) to assess the
ability of models to process information incremen-
tally. These metrics are later evaluated themselves
in Section 5.2 and differ from traditional ones used
to assess the incrementality of models, e.g. as the

ones summarized by Köhn and Menzel (2014), as
they focus on the role of the encoder in sequence-
to-sequence models. It further should be noted
that the “optimal” score of these measures with re-
spect to downstream applications cannot defined
explicity; they rather serve as a mean to uncover
insights about the ways that attention changes a
model’s behavior, which might aid the develop-
ment of new architectures.

3.1 Diagnostic Classifier Accuracy

Several works have utilized linear classifiers to
predict the existence of certain features in the hid-
den activations1 of deep neural networks (Hupkes
et al., 2018b; Dalvi et al., 2018b; Conneau et al.,
2018). Here we follow the nomenclature of Hup-
kes et al. (2018b) and call these models Diagnostic
Classifiers (DCs).

We hypothesize that the hidden activations of
an incremental model contain more information
about previous tokens inside the sequence. This
is based on the assumption that attention-based
models have no incentive to encode inputs re-
currently, as previous representations can always
be revisited. To test this assumption, we train
a DC on every time step t > 1 in a sequence
t ∈ [1, . . . T ] to predict the k most frequently oc-
curing input tokens for all time steps t′ < t (see
Figure 1). For a sentence of length T , this results
in

∑T
t=2

∑t
t′=t−1 k trained DCs. To then gener-

ate the corresponding training set for one of these
classifiers, all activations from the network on a
test set are extracted and the corresponding tokens
recorded. Next, all activations from time step t
are used as the training samples and all tokens to
generate binary labels based on whether the target
token xk occured on target time step t′. As these
data sets are highly unbalanced, class weights are
also computed and used during training.

Applying this metric to a model, the accuracies
of all classifiers after training are averaged on a
given test set, which we call Diagnostic Classi-
fier Accuracy (DC Accuracy). We can test this
way how much information about specific inputs
is lost and whether that even matters for success-
ful model performance, should it employ an en-
coding procedure of increasing abstraction like in
Chunk-and-pass processing. On the other hand,
one might assume that a more powerful model

1In this work, the terms hidden representation and hidden
activations are used synonymously.
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Figure 1: For the Diagnostic Classifier Accuracy, DCs
are trained on the hidden activations to predict previ-
ously occuring tokens. The accuracies are averaged and
potentially weighed by the distance between the hidden
activations used for training the occurrence of the token
to predict.

Figure 2: Illustration of a thought experiment about
two types of extreme recurrent models. (Left) The
model completely ignores the current token and bases
its new hidden state entirely on the previous one.
(Right) The model forgets the whole history and just
encodes the current input.

might require to retain information about an input
even if the same occured several time steps ago.
To account for this fact, we introduce a modified
version of this metric called Weighed Diagnos-
tic Classifier Accuracy (Weighed DC Accuracy),
where we weigh the accuracy of a classifier based
on the distance t− t′.

3.2 Integration Ratio

Imagine an extreme attention-based model that
does not encode information recurrently but whose
hidden state ht is solely based on the current token
xt (see right half of Figure 2). If we formalize an
LSTM as a recurrent function fθ : Rn,Rm 7→ Rm
parameterized by weights θ that maps two con-
tinuous vector representations, in our case the n-
dimensional representation of the current token
xt ∈ Rn and the m-dimensional previous hidden
state representation ht−1 ∈ Rm to a new hidden
state ht ∈ Rm, we can formalize the mentioned
scenario as a recurrent function that completely ig-
nores the pevious hidden state, which we can de-
note using a zero-vector ~0 ∈ Rm: ht = fθ(xt,~0).

In a more realistic setting, we can exploit this
thought experiment to quantify the amount of new
information that is integrated into the current hid-
den representation by subtracting this hypothetical
value from the actual value at timestep t:

∆xt = ||ht − fθ(xt,~0)||2, (1)

where || . . . ||2 denotes the l2-norm. Conversely,
we can quantify the amount of information that
was lost from previous hidden states with:

∆ht = ||ht − fθ(~0,ht−1)||2. (2)

In the case of the extreme attention-based model,
we would expect ∆xt = 0, as no information from
ht−1 has been used in the transformation of xt by
fθ. Likewise, the “ignorant” model would produce
a value of ∆ht = 0, as any new hidden represen-
tation completely originates from a transformation
of the previous one.

Using these two quanitities, we can formulate a
metric expressing the average ratio between them
throughout a sequence which we call Integration
Ratio:

φint =
1

T − 1

T∑

t=2

∆xt
∆ht

(3)

This metric provides an intuitive insight into the
(average) model behavior during the encoding
process: For φint < 1 it holds that ∆xt < ∆ht,
signifying that the model prefers to integrate new
information into the hidden state. Vice versa,
φint > 1 and therefore ∆xt > ∆ht implies a pref-
erence to maintain a representation of preceding
inputs, possibly at the cost of encoding the current
token xt in an incomplete manner.

To account for the fact that integrating new in-
formation is more important at the beginning of
a sequence – as no inputs have been processed
yet – and maintaining a representation of the sen-
tence is more plausile towards the end of a sen-
tence, we introduce two linear weighing terms
with α∆xt = T−t

T and α∆ht = t
T for ∆xt and

∆ht, respectively, which simplify to a single term
αt:

φint =
1

Z

T∑

t=2

αt
∆xt
∆ht

=
1

Z

T∑

t=2

T − t
t

∆xt
∆ht

, (4)

where Z corresponds to a new normalizing factor
such that Z =

∑T
t=2

T−t
t . It should be noted that
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the ideal score for this metric is unknown. The
motivation for this score merely lies in gaining in-
side into a model’s behaviour, showing us whether
it engages in a similar kind of eager processing
while having to handle memory constraints (in this
case realized in the constant dimensionality of hid-
den representations) like in human cognition.

3.3 Representational Similarity
The sentences “I saw a cat” and “I saw a feline”
only differ in terms of word choice, but essen-
tially encode the same information. An incremen-
tal model, based on the Chunk-and-Pass process-
ing described by Christiansen and Chater (2016),
should arrive at the same or at least a similar, ab-
stract encoding of these phrases.2 While the exact
wording might be lost in the process, the infor-
mation encoded should still describe an encounter
with a feline creature. We therefore hypothesize
that an incremental model should map the hid-
den activations of similar sequences of tokens into
similar regions of the hidden activation space. To
test this assumption, we compare the representa-
tions produced by a model after encoding the same
sequence of tokens - or history - using their aver-
age pairwise distance based on a distance measure
like the l2 norm or cosine similarity. We call the
length of the history the order of the Representa-
tional Similarity.

To avoid models to score high on this model
metric by substituting most or all of a hidden rep-
resentation with an encoding of the current token,3

we only gather the hidden states for comparison
after encoding another, arbitrary token (see Fig-
ure 3). We can therefore interpret the score as the
ability to “remember” the same sequence of tokens
in the past through the encoding.

The procedure is repeated for the n most com-
mon histories of a specified order occuring in the
test corpus over all time steps and, to obtain the
final score, results are averaged.

4 Setup

We test our metric on two different architectures,
trained on the SCAN dataset proposed by Lake
and Baroni (2018). We explain both below.

2In fact, given that humans built up sentence representa-
tions in a compositional manner, the same should hold for
sentence pairs like “I saw a cat” and ”A feline was observed
by me”, which is beyond the limits of the metric proposed
here.

3∆xt = 0 in the framework introduced in the previous
Section 3.2.

Figure 3: Representational Similarity measures the av-
erage pair-wise distance of hidden representations after
encoding the same subsquence of tokens (in this case
the history is only of first order, i.e. x2) as well as one
arbitrary token x3.

4.1 Data

We use the SCAN data set proposed by Lake
and Baroni (2018): It is a simplified ver-
sion of the CommAI Navigation task, where
the objective is to translate an order in natu-
ral language into a sequence of machine-readable
commands, e.g. “jump thrice and look” into
I_JUMP I_JUMP I_JUMP I_LOOK. We fo-
cus on the add_prim_jump_split (Loula
et al., 2018), where the model has to learn to
generalize from seeing a command like jump
only in primitive forms (i.e. by itself) to see-
ing it in composite forms during test time (e.g.
jump twice), where the remainder of the com-
posite forms has been encountered in the context
of other primitive commands during training.

The SCAN dataset has been proposed to assess
the compositional abilities of a model, which we
believe to be deeply related with the concept of
incrementality, which is the target of our research.

4.2 Models

We test two seasoned architectures used in
sequence processing, namely a Long-Short
Term Memory (LSTM) network (Hochreiter and
Schmidhuber, 1997) and an LSTM network with
attention (Bahdanau et al., 2015). The attention
mechanism creates a time-dependent context
vector ci for every decoder time step i that is used
together with the previous decoder hidden state.
This vector is a weighted average of the output
of the encoder, where the weights are calculated
based on some sort of similarity measure. More
specifically, we first calculate the energy eit
between the last decoder hidden state si−1 and
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any encoder hidden state ht using some function
a(·)

eit = a(si−1,ht) (5)

We then normalize the energies using the softmax
function and use the normalised attention weights
αit to create the context vector ct:

ci =
T∑

t=1

αitht (6)

In this work, we use a simple attention function,
namely a dot product adot:

adot(si−1,ht) = sTi−1ht, (7)

matching the setup originally introduced by Bah-
danau et al. (2015).

4.3 Training

For both architectures, we train 15 single-layer
uni-directional models, with an embedding and
hidden layer size of 128. We use the same hyper-
parameters for both architectures, to ensure com-
patibility. More specifically, both models were
trained for 50 epochs using the Adam optimizer
(Kingma and Ba, 2015) with the AMSgrad cor-
rection (Reddi et al., 2018) and a learning rate of
0.001 and a batch size of 128.

5 Results

We compute metric values for all 30 models (15
per architecture) that resulted from the training
procedure described above.4 We plot the metric
values, averaged over all runs for both models, in
Figure 4. For the representational similarity score,
we use all instances of the n = 5 most frequently
occuring histories of length 2 at all available time
steps. The unweighted DC accuracies are not de-
picted, as they do not differ substantially from
their weighted counter part, for which we also try
to detect the k = 5 most frequently occuring in-
puts at every time step.

5.1 Metric scores

As expected, the standard attention model signif-
icantly outperforms the vanilla model in terms of

4The code used in this work is available online un-
der https://github.com/i-machine-think/
incremental_encoding.

Figure 4: Results on SCAN add prim left with
n = 15. Abbreviations stand for sequence accuracy,
weighed diagnostic classifier accuracy, integration ratio
and representational similarity, respectively. All differ-
ences are statistically significant (using a Student’s t-
test with p = 0.05).

sequence accuracy. Surprisingly, both models per-
form very similarly in terms of weighed DC accu-
racy. While one possible conclusion is that both
models display a similar ability to store informa-
tion about past tokens, we instead hypothesize that
this can be explained by the fact that all sequences
in our test set are fairly short (6.8 tokens on aver-
age). Therefore, it is easy for both models to store
information about tokens over the entire length
of the input even under the constrained capacity
of the hidden representations. Bigger differences
might be observed on corpora that contain longer
sequences.

From the integration ratio scores (last column
in Figure 4), it seems that, while both models pre-
fer to maintain a history of previous tokens, the
attention-based model contains a certain bias to
add new information about the current input to-
ken. This supports our suspicion that this model
is less incentivized to build up expressive repre-
sentations over entire sequences, as the encoder
representation can always be revisited later via
the attention mechanism. Counterintuitively and
perhaps surprisingly, it appears that the attention
model produces representations that are more sim-
ilar than the vanilla model, judging from the rep-
resentational similarity score. To decode success-
fully, the vanilla model has to include information
about the entire input sequence in the last encoder
hidden state, making the encodings of similar sub-
sequences more distinct because of their different
prefixes.5 In contrast, the representations of the at-

5Remember that to obtain these scores, identical subse-
quences of only length 2 were considered.
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Figure 5: Correlations between metrics as heatmap of
Pearson’s rho values. 1 indicates a strong positive cor-
relation, −1 a negative one. Abbreviations correspond
to the same metrics as in Figure 4. Best viewed in color.

tention model is able to only contain information
about the most recent tokens, exclusively encoding
the current input at a given time step in the extreme
case, as the attention mechanism can select the re-
quired representations on demand. These results
will be revisited in more detail in section 5.3.

5.2 Metrics Comparison

To further understand the salience of our new met-
rics, we use Pearson’s correlation coefficient to
show their correlation with each other and with se-
quence accuracy. A heat map showing Pearson’s
ρ values between all metric pairs is given in Fig-
ure 5.

We can observe that representational similar-
ity and weighed DC accuracy display a substan-
tial negative correlation with sequence accuracy.
In the first case, this implies that the more simi-
lar representations of the same subsequences pro-
duced by the model’s encoder are, the better the
model itself performs later.6 Surprisingly, we can
infer from the latter case that storing more infor-
mation about the previous inputs does not lead to
better performance. At this point we should dis-
entangle correlation from causation, as it is to be
assumed that our hypothesis about the attention
mechanism applies here as well: The attention is
always able to revisit the encodings later during
the decoding process, thus a hidden representation
does not need to contain information about all pre-

6The representational similarity score actually expresses
a degree of dissimilarity, i.e. a lower score results from more
similar representations, therefore we identify a negative cor-
relation here.

vious tokens and the weighed DC accuracy suf-
fers. Therefore, as the attention model performs
better in terms of sequence accuracy, a negative
correlation score is observed. The same trend can
be observed for the sequence accuracy - integra-
tion ratio pair, where the better performance of the
attention model creates a significant negative cor-
relation.

The last noteworthy observation can be found
looking at the high positive correlation between
the weighed DC accuracy and representational
similarity, which follows from the line of thought
in Section 5.1: As the vanilla model has to squeeze
information about the whole history into the hid-
den representation at every time step, encodings
for a shorter subsequence become more distinct,
while the attention model only encodes the few
most recent inputs and are therefore able to pro-
duce more homogenous representations.

5.3 Qualitative Analysis

We scrutinize the models’ behavior when process-
ing the same sequence by recording the integration
ratio per time step and contrasting them in plots,
which are shown in Figure 6. Figure 6a and 6b
are thereby indicative of a trend which further
reinforces our hypothesis about the behavior of
attention-based models: As the orange curve lies
below the vanilla model’s blue curve in the major-
ity of cases, we can even infer on a case by case ba-
sis that these models tend to integrate more infor-
mation at every time step than a vanilla LSTM. In-
terestingly, these distinct behaviors when process-
ing information do not always lead to the models
finding different solutions. In Figure 6 however,
we present three error cases in which the models’
results do diverge.

In Figure 6a, we can see that the vanilla model
decodes a second and redundant TURN-LEFT in
the beginning of the sequence. Although this hap-
pens right at the start, the corresponding part in
the input sequence is actually encountered right
at the end of the encoding process in the form of
“turn left”, where “after” in front of it constitutes
an inversion of the sequence of operations. There-
fore, when the vanilla model starts decoding based
on the last encoder hidden state, “left” is actually
the most recently encoded token. We might as-
sume that, due to this reason, the vanilla model
might contain some sort of recency bias, which
seems to corrupt some count information and leads
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(a) The vanilla model adds a redundant TURN-LEFT in the
beginning.

(b) The vanilla model confuses left and right when decoding
opposite.

(c) The attention model fails on a trivial sequence.

Figure 6: Qualitative analysis about the models’ en-
coding behavior. Bounds show the standard deviation
of integration ratio scores per time step. Decoded sen-
tences are produced by having each model decode the
sequence individually and then consolidating the solu-
tion via a majority vote. Resulting sequences have been
slightly simplified for readability. Best viewed in color.

to a duplicate in the output sequence. The atten-
tion model seems to be able to avoid this issue
by erasing a lot of its prior encoded information
when processing “after”, as signified by the drop
in the graph. Afterwards, only very little informa-
tion seems to be integrated by the model.

The vanilla model commits a slightly different
error in Figure 6b: After both models decode three
TURN-LEFT correctly, it choses to decode “oppo-
site” as TURN-LEFT TURN-RIGHT in contrast to
the corect TURN-RIGHT TURN-RIGHT supplied
by the attention model. It is to be assumed here
that the last half of the input, “turn left thrice” had
the vanilla model overwrite some critical informa-
tion about the initial command. Again, the atten-
tion model is able to evade this problem by eras-
ing a lot of its representation when encoding “af-
ter” and can achieve a correct decoding this critical
part by attending to the representation produced at
“right” later. “turn left thrice” can followingly be
encoded without having to loose any past informa-
tion.

Lastly, we want to shed some light on one of
the rare failure cases of the attention model, as
given in Figure 6c. Both models display very sim-
ilar behavior when encoding this trivial sequence,
yet only the vanilla model is able to decode it cor-
rectly. A possible reason for this could be found
in the model’s energy function: When deciding
which encoded input to attend to for the next de-
coding step, the model scores potential candidates
based on the last decoder hidden state (see eq. 7),
which was decoded as TURN-LEFT. Therefore
the most similar inputs token might appear to be
TURN-LEFT as well. Notwithstanding this expla-
nation, it falls short of giving a conclusive reason
why the model does not err in similar ways in other
examples.

Looking at all three examples, it should further-
more be noted that the encoder of the attention
model seems to anticipate the mechanism’s behav-
ior and learns to erase much of its representation
after encoding one contiguous chunk of informa-
tion, as exemplified by the low integration ratio
after finishing the first block of commands in an
input sequence. This freedom seems to enable the
encoder to come up with more homogenous rep-
resentations, i.e. that no information has to be
overwritten and possibly being corrupted to pro-
cess later, less related inputs, which also explains
the lower representational similarity score in 5.1.
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6 Conclusion

In this work, we introduced three novel metrics
that try to shine a light on the incremental abilities
of the encoder in a sequence-to-sequence model
and tested them on a LSTM-RNN with and with-
out an attention mechanism. We showed how
these metrics relate to each other and how they
can be employed to better understand the encod-
ing behavior of models and how these difference
lead to performance improvements in the case of
the attention-based model.

We confirm the general intuition that using an
attention mechanism, due to its ability to oper-
ate on the whole encoded input sequence, prefers
to integrate new information about the current to-
ken and is less pressured to maintain a represen-
tation for the whole input sequence, which seems
to lead to some corruptions of the encoded infor-
mation in case of the vanilla model. Moreover,
our qualitative analysis suggests that the encoder
of the attention model learns to chunk parts of the
input sequence into salient blocks, a behavior that
is reminiscent of the Chunk-and-Pass processing
described by Christiansen and Chater (2016) and
one component that is hypothesized to enable in-
cremental processing in humans. In this way, the
attention model most surprisingly seems to dis-
play a more incremental way of processing than
the vanilla model.

These results open up several lines of future re-
search: Although we tried to assess incremental-
ity in sequence-to-sequence models in a quantita-
tive manner, the notion of incremental processing
lacks a formal definition within this framework.
Thus, such definition could help to confirm our
findings and aid in developing more incremental
architectures. It furthermore appears consequen-
tial to extend this methodology to deeper models
and other RNN-variants as well as other data sets
in order to confirm this work’s findings.

Although we were possibly able to identify one
of the components that build the foundation of
human language processing (as defined by Chris-
tiansen and Chater, 2016) in attention models,
more work needs to be done to understand how
these dynamics play out in models that solely rely
on attention like the Transformer (Vaswani et al.,
2017) and how the remaining components could
be realized in future models.

Based on these reflections, future work should
attack this problem from a solid foundation: A

formalization of incrementality in the context of
sequence-to-sequence modelling could help to de-
velop more expressive metrics. These metrics in
turn could then be used to assess possible incre-
mental models in a more unbiased way. Further
thought should also be given to a fairer compari-
son of candidate models to existing baselines: The
attention mechanism by Bahdanau et al. (2015)
and models like the Transformer operate without
the temporal and memory pressure that is claimed
to fundamentally shape human cognition Chris-
tiansen and Chater (2016). Controlling for this
factor, it can be better judged whether incremental
processing has a positive impact on the model’s
performance. We hope that these steps will lead
to encoders that create richer representations that
can followingly be used back in regular sequence-
to-sequence modelling tasks.
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Abstract

Adversarial training is a process in Machine
Learning that explicitly trains models on ad-
versarial inputs (inputs designed to deceive or
trick the learning process) in order to make it
more robust or accurate. In this paper we in-
vestigate how representing adversarial training
models as committees can be used to effec-
tively improve the performance of Question-
Answer (QA) Ranking. We start by empiri-
cally probing the effects of adversarial train-
ing over multiple QA ranking algorithms, in-
cluding the state-of-the-art Multihop Atten-
tion Network model. We evaluate these algo-
rithms on several benchmark datasets and ob-
serve that, while adversarial training is ben-
eficial to most baseline algorithms, there are
cases where it may lead to overfitting and
performance degradation. We investigate the
causes of such degradation, and then propose
a new representation procedure for this adver-
sarial learning problem, based on committee
learning, that not only is capable of consis-
tently improving all baseline algorithms, but
also outperforms the previous state-of-the-art
algorithm by as much as 6% in NDCG (Nor-
malized Discounted Cumulative Gain).

1 Introduction

Question Answer (QA) ranking, or the task of
accurately ranking the best answers to an input
question, has been a long-standing research pur-
suit with practical applications in a variety of do-
mains. Popular examples of such applications are
customer support chat-bots, community question
answering portals, and digital assistants like Siri
or Alexa Yih and Ma (2016).

Early work on QA ranking relied heavily on
linguistic knowledge (such as parse-trees), fea-
ture engineering or external resources (Wang and
Manning, 2010; Wang et al., 2007; Yih et al.,
2013). Yih et al. (2013) constructed semantic fea-
tures from WordNet and paired semantically re-
lated words based on these features and relations.
Wang and Manning (2010); Wang et al. (2007)

used syntactic matching between question and an-
swer parse trees for answer selection. Other pro-
posals used minimal edit sequences between de-
pendency parse trees as a matching score between
question and answer (Heilman and Smith, 2010;
Severyn and Moschitti, 2013; Yao et al., 2013).

The majority of the recent developments for
QA ranking algorithms are based on deep learn-
ing techniques, and fall into two different classes
of models: representation-based or interaction-
based. In representation-based models, both
question and answer are mapped to the same rep-
resentation space via network layers with shared
weights, and a final relevance or matching score
is computed from these representations (Bowman
et al., 2015; Tan et al., 2015; Huang et al., 2013;
Tan et al., 2016; Wang et al., 2016). In interaction-
based models, the network attempts to capture
multiple levels of interaction (or similarity) be-
tween question and answer (Hu et al., 2014; Pang
et al., 2016; Yu et al., 2018). The final rele-
vance/matching score can be computed out of the
partial similarities derived from the multiple inter-
actions.

Recent results have indicated that
representation-based models, when used with
attention layers to focus on relevant parts of
the question and answer, tend to outperform
interaction-based models (Tan et al., 2016; Wang
et al., 2016). The recently proposed Multihop
Attention Network (MAN) model (Tran and
Niederee, 2018) currently achieves state-of-
the-art performance on ranking tasks by using
sequential attention (Brarda et al., 2017) over
multiple attention layers. This model is discussed
in detail in Section 2.2.

Adversarial training and Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014)
have been successfully applied to Computer Vi-
sion (Karras et al., 2017; Isola et al., 2017; Zhu
et al., 2017; Kelkar et al., 2018) and Natural Lan-
guage Processing (Lin et al., 2017) applications,
but only sparsely studied in Information Retrieval
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tasks. As described by Wang et al. (2017), ad-
versarial training in Information Retrieval can be
approached by having a generator model to sam-
ple difficult adversarial examples which are passed
to a discriminator model that learns to rank on
increasingly difficult adversarial examples. This
adversarial training process in principle can lead
to increased robustness and accuracy of the final
ranking model.

We show that in general most models do benefit
from adversarial training, with a clear increase in
ranking metrics. However, we also observed that
not all types of models benefit from straightfor-
ward adversarial training. For instance, Multihop
Attention Network often displayed worse results
with adversarial training. In such cases, we ob-
served that the model was excessively compensat-
ing to the current adversarial training data batch
and often forgetting previous batches, thus reduc-
ing its performance on test data.

To help address this issue, we propose a novel
committee representation to adversarial modeling
for QA ranking that can be applied to any under-
lying ranking algorithm. Not only does it address
the observed “overfitting” that may occur dur-
ing adversarial training, but provides an improve-
ment to all baseline QA ranking models we tested.
In particular, we introduce a new state-of-the-art
model AdvCom-MAN (Adversarial Committee -
Multihop Attention Network) for QA ranking that
displays, to the best of our knowledge, state-of-
the-art results on four different datasets for QA
Ranking.

2 Approaches

We introduce in this section the various algorithms
and techniques that we use to investigate the use of
adversarial training to QA ranking.

2.1 Baselines

We used two recently proposed interaction based
models as baselines, meaning that these models
work on interaction (lexical similarities) between
the question and answer text.
• Match Pyramid - Proposed by Pang et al.

(2016), this model uses convolution layers on
the “interaction matrix” formed by taking the
dot product of embeddings of question words
with answer words.
• Deep Matching Net - This model was pro-

posed by Yang et al. (2018) and was origi-

nally meant for multi-turn conversations, but
we adapted a version of it for single turn con-
versation which can also work as QA rank-
ing. Similar to Match Pyramid in most as-
pects, this model uses 2 interaction matrices,
the second one being constructed in a similar
fashion of dot products between embeddings
obtained by a Bi-directional Gated Recurrent
Unit (Bi-GRU).

2.2 Multihop Attention Network (MAN)

This model was recently proposed by Tran and
Niederee (2018) as state-of-the-art in QA ranking
tasks. A bi-directional LSTM layer first generates
the representations of question and answer words.
Following this, multiple “hops” or multiple layers
of attention are used to get attended representa-
tions of the question and answer at each attention
layer. This is accomplished by using sequential at-
tention (Brarda et al., 2017) at every layer. The in-
tuition for this architecture is to compare and ana-
lyze the question and answer from different points
of view by focusing on different parts of the text
in each hop. At each attention hop, cosine similar-
ity is computed between the question and answer
representations. The final matching score is cal-
culated by summing the cosine similarities at each
layer (Equation 1).

sim(q, a) =
∑

k

cos
(
o(k)q , o(k)a

)
(1)

Here o(k)q and o
(k)
a refer to the question and an-

swer representations after the kth hop in the net-
work. All the models are trained by minimizing
the Hinge Loss (Equation 2) with L2 regulariza-
tion.

L = max{0,M−sim(q, a+)+sim(q, a−)} (2)

whereM is the margin, q is the input question, and
a+ and a− are correct and incorrect answers to q
respectively.

2.3 Vanilla Adversarial Learning

IRGAN (Information Retrieval Generative Adver-
sarial Networks) has been recently proposed as a
generic adversarial learning framework for several
Information Retrieval tasks (Wang et al., 2017). In
this paper we focus the adaptation of IRGAN to
pairwise cases, which adapt well to the QA rank-
ing problem.
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IRGAN uses the same minimax game idea as
a Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) but uses different objective
functions for the generator and discriminator. The
generator and discriminator of a GAN are initial-
ized with a model pre-trained on original train-
ing dataset. In a ranking task setting, the job of
generator is to sample difficult incorrect answers
given an input question and correct answers for it.
The discriminator then learns to rank this difficult
dataset.

Since sampling is a non-differentiable opera-
tion, the generator cannot be trained using back-
propagation by error signal from the discrimina-
tor. Hence a Reinforcement Learning strategy
(Williams, 1992; Yu et al., 2017) is used to train
the generator where the objective of the generator
is to maximize its reward (Equation 3).

LGen =
1

K

K∑

k=1

log
(
gθ(dk|q)

)
× reward (3)

LDis =
1

K

K∑

k=1

hinge(q, a+, dk) (4)

where dk is the kth adversarial incorrect answer,
gθ is the generator score for kth answer and ques-
tion q, and reward is given by Equation 5.

reward = 2

(
σ
(
hinge(q, a+, dk)

)
− 0.5

)
(5)

and hinge(q, a+, dk) is hinge loss (Equation 2).
Detailed derivation of these equations has been
given in the paper that proposes IRGAN (Wang
et al., 2017) and has not been delineated here to
focus on more relevant aspects of the paper.

2.4 Adversarial Committee Learning
In Section 3 we present details on our adversar-
ial training experiments. Surprisingly, a number
of experiments showed results with high variance
that seemed somewhat contradictory to the expec-
tation that adversarial training should boost model
performance (or at least not deteriorate it). After
careful observation, we noticed that as adversarial
training progresses, some models may start over-
fitting to the adversarial examples in the current
batch, and partially forgetting the original training
data, which consequently leads to a deterioration
of test data ranking performance.

This led to the development of a novel adver-
sarial committee learning strategy that boosts the

model performance, irrespective of the nature of
model itself. The idea is to sample the model
at regular intervals during adversarial training, in-
cluding the pre-trained model and the fully trained
model after adversarial training. The intuition be-
hind this strategy is that the sampled models have
decision boundaries that are fit to different pro-
portions of the original dataset and the adversar-
ial dataset, consequently creating a committee of
diverse decision makers. This idea is very similar
to the work of Elsas et al. (2008) where percep-
trons are sampled during training to be a part of
the decision making committee. This work uses
the original dataset to form the committee, as op-
posed to adversarial dataset which is used in our
model.

During prediction, given a question q and a can-
didate answer a, the matching score between them
score(q, a) is computed as shown in equation 6.

score(q, a) =
N∑

i=1

wihi(q, a) (6)

where hi(q, a) is the matching score between q
and a given by ith model, and wi is the weight
assigned to ith model. This weight is computed
by first recording the performance metric (MRR,
MAP, NDCG@5, etc.) on the validation dataset
for all models, and then normalizing them to 1.
We sampled these N models at regular intervals
during adversarial training process. For our exper-
iments, we sampled the models at every 3rd epoch
to be a part of the committee. We tried different
sampling strategies but this one worked out to be
the best trade-off between committee performance
and run-time during prediction.

The results show that this strategy works for all
types of models and it overcomes the overfitting
issues observed with vanilla adversarial training.

3 Experiments

3.1 Datasets

We use four datasets, belonging to factoid and
non factoid categories to evaluate the proposed
strategy. WikiQA is an open domain question
answering dataset that was introduced by Yang
et al. (2015) and has now become a very popu-
lar benchmark dataset for QA ranking systems.
Feng et al. (2015) recently released a large non-
factoid QA dataset for insurance domain - Insur-
ance QA. Like Tran and Niederee (2018), we use
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Model
WikiQA Insurance QA FiQA Tax Domain QA

(19k/ 2.5k/ 5.8k) (926k/ 724k/ 650k) (700k/ 300k/ 300k) (42k/ 14k/ 14k)

NDCG@5 MRR test-1 test-2 NDCG@5 MRR prec@1

Match Pyramid 0.6628 0.6258 0.4571 0.4036 0.3423 0.4571 0.5767
+ Vanilla Adversarial 0.6939 0.6675 0.5269 0.4602 0.3715 0.4859 0.6437
+ Adversarial Committee 0.6987 0.6748 0.5307 0.4751 0.3812 0.4866 0.6568
Deep Matching Net 0.6922 0.6533 0.6135 0.5498 0.3972 0.4963 0.6601
+ Vanilla Adversarial 0.6952 0.6692 0.6464 0.6007 0.4114 0.5149 0.6636
+ Adversarial Committee 0.7051 0.67 0.688 0.625 0.4157 0.5191 0.6863
MAN 0.7328 0.7134 0.7032 0.668 0.4312 0.5153 0.7927
+ Vanilla Adversarial 0.7337 0.711 0.6951 0.6509 0.3844 0.465 0.7975
+ Adversarial Committee 0.7402 0.7205 0.7267 0.6814 0.4601 0.5318 0.8029

Table 1: Experimental results of adversarial learning on different datasets; Models have been evaluated on
NDCG@5 and MRR for WikiQA and FiQA, and on Precision@1 for Insurance QA test sets 1 and 2, and Tax
Domain QA

version 1 of this dataset which is divided into a
training, validation and 2 test sets. FiQA, the fi-
nancial domain non-factoid dataset1 was released
recently and built by crawling data from Reddit,
StockTwits and StackExchange. Tax Domain QA
dataset was obtained from a popular tax domain
question answering platform. Each question had
only one correct answer, so we create an answer
pool for each question by randomly sampling in-
correct answers from the entire collection of an-
swers. Table 1 shows the size of these datasets
in terms of QA pairs in the (train/ validation/ test)
format.

We evaluate these datasets on different metrics.
For the datasets that have only 1 correct answer
in the answer pool associated with every question,
we use precision@1 since it the the most suitable
metric. For datasets that have multiple correct an-
swers, more comprehensive metrics such as Mean
Reciprocal Rank (MRR) and NDCG@5 have been
used that evaluate the model’s ability to retrieve
not only the most relevant, but all relevant an-
swers.

3.2 Results

In this Section we present our experimental results
on running adversarial training techniques over
different QA ranking baseline algorithm (from
Section 2) on multiple QA datasets (from Section
3.1). For all the models, we use the prefix Adv-
when we refer to their variants trained by vanilla
adversarial learning, and AdvCom- when they are
trained by adversarial committee learning.

1https://sites.google.com/view/fiqa

From Table 1 it can be seen that the metrics
show fairly similar trends across all datasets 2.

Based on the results from all our experiments,
we observed that the overall performance of Mul-
tihop Attention Network and its variants was the
best of the three model types, followed by Deep
Matching Network and its variants. Match Pyra-
mid and its variants had the lowest performance
scores in general, except for a few anomalous
cases where AdvCom-Match Pyramid performed
better than few variants of Deep Matching Net-
work on some of the datasets. Furthermore, the
results also show that while vanilla adversarial
learning provides a significant boost in model per-
formance for Match Pyramid and Deep Match-
ing Network, the performance boost by adversar-
ial committee learning was much better. However
for MAN, vanilla adversarial learning significantly
worsens the base model performance for most
datasets. Our hypothesis is that since MAN has
a higher capacity, it overfitted to adversarial train-
ing samples thereby forgetting some of its knowl-
edge from original dataset. Adversarial commit-
tee learning however addresses this issue and im-
proves the performance of base MAN by creating
a committee of diverse decision makers that con-
tain knowledge from both original and adversarial
dataset. Consequently, the AdvCom-MAN estab-
lishes new state-of-the-art standards for QA rank-
ing models on almost all datasets.

2All row differences are statistically significant based on
95% bootstrap confidence interval
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4 Discussion and Conclusion

In this work we provided a large empirical in-
vestigation on the effects of adversarial training
applied to deep QA ranking models. We ex-
plored both interaction-based and representation-
based QA ranking models, including the previous
state-of-the-art Multihop Attention Network algo-
rithm. While in most cases adversarial training
proved to be indeed beneficial to QA ranking, we
observed that in some cases overfitting to the ad-
versarial training data during adversarial learning
could lead to lower than expected ranking perfor-
mance.

We then proposed a new adversarial learning
representation based on a committee strategy to
improve QA ranking performance. We showed
that the adversarial committee technique was able
to boost the performance of all models and in
all datasets. As a result, an adversarial commit-
tee applied to the MAN algorithm presented the
new state-of-the-art results for QA ranking on all
datasets tested on this paper, including WikiQA,
InsuranceQA and FiQA.
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Abstract

Most existing relation extraction models as-
sume a fixed set of relations and are unable
to adapt to exploit newly available supervision
data to extract new relations. In order to al-
leviate such problems, there is the need to de-
velop approaches that make relation extraction
models capable of continuous adaptation and
learning. We investigate and present results for
such an approach, based on a combination of
ideas from lifelong learning and optimization-
based meta-learning. We evaluate the pro-
posed approach on two recent lifelong relation
extraction benchmarks, and demonstrate that it
markedly outperforms current state-of-the-art
approaches.

1 Introduction

The majority of existing supervised relation ex-
traction models can only extract a fixed set of re-
lations which has been specified at training time.
They are unable to detect an evolving set of novel
relations observed after training without substan-
tial retraining, which can be computationally ex-
pensive and may lead to catastrophic forgetting
of previously learned relations. Zero-shot relation
extraction approaches (Rocktäschel et al., 2015;
Demeester et al., 2016; Levy et al., 2017; Oba-
muyide and Vlachos, 2018) can extract unseen re-
lations, but at lower performance levels, and are
unable to continually exploit newly available su-
pervision to improve performance without consid-
erable retraining. These limitations also extend
to approaches to extracting relations in other lim-
ited supervision settings, for instance in the one-
shot setting (Obamuyide and Vlachos, 2017). It is
therefore desirable for relation extraction models
to have the capability to learn continuously with-
out catastrophic forgetting of previously learned
relations. This would enable them exploit newly

available supervision to both identify novel rela-
tions and improve performance without substan-
tial retraining.

Recently, Wang et al. (2019) introduced an em-
bedding alignment approach to enable continual
learning for relation extraction models. They con-
sider a setting with streaming tasks, where each
task consists of a number of distinct relations, and
proposed to align the representation of relation in-
stances in the embedding space to enable contin-
ual learning of new relations without forgetting
knowledge from past relations. While they ob-
tained promising results, a key weakness of the
approach is that the use of an alignment model
introduces additional parameters to already over-
parameterized relation extraction models, which
may in turn lead to an increase in the quantity of
supervision required for training. In addition, the
approach can only align embeddings between ob-
served relations, and does not have any explicit ob-
jective that encourages the model to transfer and
exploit knowledge gathered from previously ob-
served relations to facilitate the efficient learning
of yet to be observed relations.

In this work, we extend the work of Wang
et al. (2019) by exploiting ideas from both life-
long learning and meta-learning. We propose to
consider lifelong relation extraction as a meta-
learning challenge, to which the machinery of cur-
rent optimization-based meta-learning algorithms
can be applied. Unlike the use of a separate align-
ment model as proposed in Wang et al. (2019), the
proposed approach does not introduce additional
parameters. In addition, the proposed approach
is more data efficient since it explicitly optimizes
for the transfer of knowledge from past relations,
while avoiding the catastrophic forgetting of pre-
viously learned relations. Empirically, we evaluate
on lifelong versions of the datasets by Bordes et al.
(2015) and Han et al. (2018) and demonstrate con-
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siderable performance improvements over prior
state-of-the-art approaches.

2 Background

Lifelong Learning In the lifelong learning set-
ting, also referred to as continual learning (Ring,
1994; Thrun, 1996; Zhao and Schmidhuber,
1996), a model fθ is presented with a sequence of
tasks {Tt}t=1,2,3..,T , one task per round, and the
goal is to learn model parameters {θt}t=1,2,3,..,T

with the best performance on the observed tasks.
Each task T can be a conventional supervised task
with its own distinct train (T train), development
(T dev) and test (T test) splits. At each round
t, the model is allowed to exploit knowledge
gained from the previous t − 1 tasks to enhance
performance on the current task. In addition,
the model is also allowed to have a small-sized
buffer memory B, which can be used to store a
limited amount of data from previously observed
tasks. A prominent line of work in lifelong
learning research is developing approaches that
enable models learn new tasks without forgetting
knowledge from previous tasks, i.e. avoiding
catastrophic forgetting of old tasks (McCloskey
and Cohen, 1989; Ratcliff, 1990; McClelland
et al., 1995; French, 1999). Approaches proposed
to address this problem include memory-based
approaches (Lopez-Paz and Ranzato, 2017;
Rebuffi et al., 2017; Chaudhry et al., 2019);
parameter consolidation approaches (Kirkpatrick
et al., 2017; Zenke et al., 2017); and dynamic
model architecture approaches (Xiao et al., 2014;
Rusu et al., 2016; Fernando et al., 2017).

Meta-Learning Meta-learning, or learning
to learn (Schmidhuber, 1987; Naik and Mam-
mone, 1992; Thrun and Pratt, 1998), aims to
develop algorithms that learn a generic knowledge
of how to solve tasks from a given distribution of
tasks, by generalizing from solving related tasks
from that distribution. Given tasks T sampled
from a distribution of tasks p(T ), and a learner
model f(x; θ) parameterized by θ, gradient-based
meta-learning methods, such as MAML (Finn
et al., 2017), learn a prior initialization of the
parameters of the model which, at meta-test time,
can be quickly adapted to achieve good perfor-
mance on a new task using a few steps of gradient
descent. During adaptation to the new task, the
model parameters θ are updated to task-specific

parameters θ′ with good performance on the task.
Formally, the meta-learning algorithms optimize
for the meta-objective:

min
θ

ET ∼p(T )
[
LT

(
θ′
)]

=

min
θ

ET ∼p(T ) [LT (U (DT ; θ))] (1)

where LT is the loss and DT is training data from
task T , and U is a fixed gradient descent learning
rule, such as vanilla SGD. While these algorithms
were proposed and evaluated in the context of few-
shot learning, here we demonstrate their effective-
ness when utilized in the lifelong learning setting
for relation extraction, following similar intuition
as recent work by Finn et al. (2019).

3 Meta-Learning for Lifelong Relation
Extraction

It can be inferred from the previous section that
a lot of lifelong learning research has focused on
approaches to avoid catastrophic forgetting (i.e.
negative backward transfer of knowledge) while
recent meta-learning studies have focused on ef-
fective approaches for positive forward transfer of
knowledge (for few-shot tasks). Given the com-
plementary strengths of the approaches from the
two learning settings, we propose to embed meta-
learning into the lifelong learning process for rela-
tion extraction.

While we can utilize the MAML algorithm to
directly optimize the meta-objective in Equation
1 for our purpose, doing so requires the compu-
tation of second-order derivatives, which can be
computationally expensive. Nichol et al. (2018)
proposed REPTILE, a first-order alternative to
MAML, which uses only first-order derivatives.
Similar to MAML, REPTILE works by repeatedly
sampling tasks, training on those tasks and mov-
ing the initialization towards the adapted weights
on those tasks. Here we adopt the REPTILE al-
gorithm for meta-learning. Our algorithm for life-
long relation extraction is illustrated in Algorithm
1.

We start by randomly initializing the parameters
of the relation extraction model (the learner) (line
1). Then, as new tasks arrive, we augment their
training set with randomly sampled task exemplars
from the buffer memory B (lines 2-9). We then
sample a batch of relations from the augmented
training set (line 10). Then for each sampled re-
lation Ri, we sample a batch of supervision in-
stances DtrainRi from its training set (line 11-12).
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We then obtain the adapted model parameters θit
on the relation by first computing the gradient of
the training loss on the sampled relation instances
(line 13) and backpropagating the gradients with
a gradient-based optimization algorithm (such as
SGD or Adagrad (Duchi et al., 2011)) (line 14).
At the end of the learning iteration, the adapted
parameters on all sampled relations in the batch
are averaged, and an update is made on the task
parameters θt (line 16). This is done until con-
vergence on the current task, after which exem-
plars of the current task are added to the buffer
memory (line 18). Task exemplars are obtained by
first clustering all training instances of the current
task into 50 clusters using K-Means, then select-
ing an instance from each cluster with a represen-
tation closest to the cluster prototype. Finally, the
model parameters are updated to the current task’s
adapted parameters (line 19).

Algorithm 1 Meta-Learning for Lifelong Relation
Extraction (MLLRE)
Require: Stream of incoming tasks T1, T2, T3, ...
Require: Relation extraction function fθ
Require: Optimization algorithm (e.g. SGD)
Require: Step size ε, learning rate α
Require: Buffer memory B
1: Randomly initialize θ
2: while there are still tasks do
3: Retrieve next task Tt from stream
4: Initialize θt ← θ
5: repeat
6: if B is not empty then
7: Retrieve exemplars E of random task from B
8: Update task training set Dtraint = Dtraint ∪ E
9: end if

10: Sample random relations {Ri}Ni=1 from Dtraint

11: for eachRi do
12: Sample train instances DtrainRi

ofRi
13: Evaluate∇θtLRi(fθt) using DtrainRi

14: Compute adapted parameters:
θit = SGD(θt,∇θtLRi(fθt), α)

15: end for
16: Update task parameters:

θt = θt − ε 1
N

N∑

i=1

(θit − θt)

17: until Convergence
18: Add exemplars of Tt to B
19: Update θ ← θt
20: end while

4 Relation Classification Model

In principle the learner model fθ could be any
gradient-optimized relation extraction model. In
order to use the same number of parameters and
ensure fair comparison to Wang et al. (2019), we
adopt as the relation extraction model fθ the Hier-

Method FewRel SimpleQuestions

ACCw. ACCa. ACCw. ACCa.

Origin 0.189 0.208 0.632 0.569
GEM 0.492 0.598 0.841 0.796
AGEM 0.361 0.425 0.776 0.722
EWC 0.271 0.302 0.672 0.590
EA-EMR (Full) 0.566 0.673 0.878 0.824
EA-EMR (w/o Sel.) 0.564 0.674 0.857 0.812
EA-EMR (w/o Align.) 0.526 0.632 0.869 0.820
EMR 0.510 0.620 0.852 0.808
MLLRE 0.602 0.741 0.880 0.842

Table 1: Accuracy on the test set of all tasksACCwhole

(denoted ACCw.) and average accuracy on the test
set of only observed tasks ACCavg (denoted ACCa.)
on the Lifelong FewRel and Lifelong SimpleQuestions
datasets. Best results are in bold. Except for MLLRE,
results for other models are obtained from Wang et al.
(2019).

arachical Residual BiLSTM (HR-BiLSTM) model
of Yu et al. (2017), which is the same model used
by Wang et al. (2019) for their experiments. The
HR-BILSTM is a binary relation classifier, and ac-
cepts as input a sentence and a candidate relation,
then utilizes two Bidirectional Long Short-Term
Memory (Hochreiter and Schmidhuber, 1997;
Graves and Schmidhuber, 2005) (BiLSTM) units
with shared parameters to process the Glove
(Pennington et al., 2014) embeddings of words in
the sentence and relation names, then selects the
relation with the maximum cosine similarity to
the sentence as its response.

Hyperparameters Apart from the hyperpa-
rameters specific to meta-learning (such as the
step size ε), all other hyperparameters we use
for the learner model are the same as used by
Wang et al. (2019). We also use the same buffer
memory size (50) for each task. Note that the
meta-learning algorithm uses SGD as the fixed
update rule (U), and does not add any additional
trainable parameters to the learner model.

5 Experiments

5.1 Setup

We conduct experiments in two settings. In the full
supervision setting, we provide all models with all
supervision available in the training set of each
task. In the second, we limit the amount of su-
pervision for each task to measure how the mod-
els are able to cope with limited supervision. Each
experiment is run five (5) times and we report the
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(a)

(b)

Figure 1: Results obtained using 100 training instances
for each task on (a) Lifelong FewRel and (b) Lifelong
SimpleQuestions datasets.

average result.

5.2 Datasets

We conduct experiments on Lifelong FewRel and
Lifelong SimpleQuestions datasets, both intro-
duced in Wang et al. (2019). Lifelong FewRel is
derived from the FewRel (Han et al., 2018) dataset,
by partitioning its 80 relations into 10 distinct
clusters made up of 8 relations each, with each
cluster serving as a task where a sentence must
be labeled with the correct relation. The 8 rela-
tions in each cluster were obtained by clustering
the averaged Glove word embeddings of the rela-
tion names in the FewRel dataset. Each instance
of the dataset contains a sentence, the relation it
expresses and a set of randomly sampled negative
relations. Lifelong SimpleQuestions was similarly
obtained from the SimpleQuestions (Bordes et al.,
2015) dataset, and is made up of 20 clusters of re-
lations, with each cluster serving as a task.

(a)

(b)

Figure 2: Results obtained using 200 training instances
for each task on (a) Lifelong FewRel and (b) Lifelong
SimpleQuestions datasets.

5.3 Evaluation Metrics
We report two measures, ACCwhole andACCavg,
both introduced in Wang et al. (2019). ACCwhole
measures accuracy on the test set of all tasks and
gives a balanced measure of model performance
on both observed (seen) and unobserved (unseen)
tasks, and is the primary metric we report for all
experiments. We also reportACCavg, which mea-
sures the average accuracy on the test set of only
observed (seen) tasks.

5.4 Results and Discussion
Full Supervision Results Table 1 gives both
the ACCwhole and ACCavg results of our ap-
proach compared to other approaches including
Episodic Memory Replay (EMR) and its various
embedding-aligned variants EA-EMR as proposed
in Wang et al. (2019). Across all metrics, our
approach outperforms the previous approaches,
demonstrating its effectiveness in this setting. This
result is likely because our approach is able to ef-
ficiently learn new relations by exploiting knowl-
edge from previously observed relations.
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Limited Supervision Results The aim of our lim-
ited supervision experiments is to compare the use
of an alignment module as proposed by Wang et al.
(2019) to using our approach when only limited
supervision is available for all tasks. We com-
pare three approaches, Full EA-EMR (which uses
their alignment module), its variant without the
alignment module (EA-EMR NoAlign) and our ap-
proach (MLLRE). Figures 1(a) and 1(b) show re-
sults obtained using 100 supervision instances for
each task on Lifelong FewRel and Lifelong Sim-
pleQuestions. Figures 2(a) and 2(b) show the cor-
responding plots using 200 supervision instances
for each task. From the figures, we observe that
the use of a separate alignment model results in
only minor gains when supervision for the tasks is
limited, whereas the use of our approach leads to
wide gains on both datasets.

In summary, because our approach explicitly
encourages the model to learn to share and trans-
fer knowledge between relations (by means of the
meta-learning objective), the model is able to learn
to exploit common structures across relations in
different tasks to efficiently learn new relations
over time. This leads to the performance improve-
ments obtained by our approach.

6 Conclusion

We investigated the effectiveness of utilizing a
gradient-based meta-learning algorithm within a
lifelong learning setting to enable relation extrac-
tion models that are able to learn continually. We
show the effectiveness of this approach, both when
provided full supervision for new tasks and when
provided limited supervision for new tasks, and
demonstrated that the proposed approach outper-
formed current state-of-the-art approaches.
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Abstract

Cross-lingual embeddings aim to represent
words in multiple languages in a shared vector
space by capturing semantic similarities across
languages. They are a crucial component for
scaling tasks to multiple languages by trans-
ferring knowledge from languages with rich
resources to low-resource languages. A com-
mon approach to learning cross-lingual em-
beddings is to train monolingual embeddings
separately for each language and learn a lin-
ear projection from the monolingual spaces
into a shared space, where the mapping relies
on a small seed dictionary. While there are
high-quality generic seed dictionaries and pre-
trained cross-lingual embeddings available for
many language pairs, there is little research
on how they perform on specialised tasks. In
this paper, we investigate the best practices
for constructing the seed dictionary for a spe-
cific domain. We evaluate the embeddings on
the sequence labelling task of Curriculum Vi-
tae parsing and show that the size of a bilin-
gual dictionary, the frequency of the dictionary
words in the domain corpora and the source
of data (task-specific vs generic) influence the
performance. We also show that the less train-
ing data is available in the low-resource lan-
guage, the more the construction of the bilin-
gual dictionary matters, and demonstrate that
some of the choices are crucial in the zero-shot
transfer learning case.

1 Introduction

Expanding Natural Language Processing (NLP)
models to new languages typically involves cre-
ating completely new data sets for each language
which comes with challenges such as acquir-
ing and annotating the data. To avoid these te-
dious and costly tasks, one can use cross-lingual
embeddings to enable knowledge transfer from
languages with sufficient training data to low-
resource languages.

Cross-lingual embeddings aim to represent

words in multiple languages in a shared vector
space by capturing semantic similarities across
languages. Based on the assumption that the em-
bedding spaces of different languages exhibit a
similar structure (Mikolov et al., 2013), previ-
ous work proposed to learn a linear transforma-
tion which projects independently learned mono-
lingual spaces into a single shared space, using
a seed translation dictionary (Faruqui and Dyer,
2014). Although more advanced techniques in-
volving jointly optimising monolingual and cross-
lingual objectives were proposed, most of these
solutions require some form of cross-lingual su-
pervision via parallel data (Guo et al., 2015; Kle-
mentiev et al., 2012; Xiao and Guo, 2014; Her-
mann and Blunsom, 2014; Søgaard et al., 2015;
Vulic and Moens, 2015). However, for applica-
tions targeting a specific domain (in our case, hu-
man resources) there is often little to no parallel
data available, so simple alignment-based meth-
ods relying on only a small translation dictionary
remain an attractive choice.

We adopt the Multilingual CCA framework
(Ammar et al., 2016), and evaluate the cross-
lingual embedding on a sequence labelling task
in Curriculum Vitae parsing domain. We use this
framework as it only requires an easier to acquire
seed dictionary. Previous work has shown that
the quality of this dictionary influences the cross-
lingual embeddings (Vulić and Korhonen, 2016).
However, to the best of our knowledge, there has
been no extensive research on the choice of a seed
dictionary in a non-generic domain. In addition,
little attention was paid to how the quality of the
bilingual dictionary affects performance as some
labelled data from the target language is added.

In this paper, we investigate the best practices
to create a seed dictionary for training domain-
specific cross-lingual embeddings. We measure
the impact of different choices of the dictionary
creation on the downstream task: the dictionary
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size, the source of the words and their frequency,
in both zero-shot and joint training scenarios.

2 Related work

Offline linear map induction methods The ear-
liest approach to induce a linear mapping from
the monolingual embedding spaces into a shared
space was introduced in (Mikolov et al., 2013).
They propose to learn the mapping by optimising
the least squares objective on the monolingual em-
bedding matrices corresponding to translational
equivalent pairs. Subsequent research aimed to
improve the mapping quality by optimising dif-
ferent objectives such as max-margin (Lazaridou
et al., 2015) and by introducing an orthogonal-
ity constraint to the bilingual map to enforce self-
consistency (Xing et al., 2015; Smith et al., 2017).
(Artetxe et al., 2016) provide a theoretical analy-
sis to existing approaches and in a follow-up re-
search (Artetxe et al., 2018) they propose to learn
principled bilingual mappings via a series of linear
transformations.

An extensive survey of different approaches, in-
cluding offline and online methods can be found in
(Ruder, 2017).

The role of bilingual dictionary A common
way to select a bilingual dictionary is by using
either automatic translations of frequent words or
word alignments. For instance, (Faruqui and Dyer,
2014) select the target word to which the source
word is most frequently aligned in parallel cor-
pora. (Mikolov et al., 2013) use the 5,000 most
frequent words from the source language with
their translations. To investigate the impact of
the dictionary on the embedding quality, (Vulić
and Korhonen, 2016) evaluate different factors and
conclude that carefully selecting highly reliable
symmetric translation pairs improves the perfor-
mance of benchmark word-translation tasks. The
authors also demonstrate that increasing the lexi-
con size over 10,000 pairs show a slow and steady
decrease in performance.

3 Task

In this work, we look at the Curriculum Vitae
(CV) parsing task: extraction of relevant informa-
tion (e.g. name, job titles, etc) from a given CV
and converting it into a structured format. This
task can be cast as a cascaded sequence labelling
problem (Yu et al., 2005) consisting of two steps:
section segmentation and extraction of pre-defined

entities, similar to named entity recognition task
(NER). In the first step, a model segments the en-
tire CV into sections such as personal informa-
tion, education, experience or skills. In the sec-
ond step, for each section, a dedicated model ex-
tracts entities specific to that section such as name,
phone number, etc. from personal section and de-
gree level, institution, etc. from education sec-
tion. For all models, we use the standard BIO
approach (Begin, Inside, Outside) to sequence la-
belling (Ramshaw and Marcus, 1995). For brevity,
in this paper, we present the results of extracting 2
entities from the experience section: job title and
organisation name.

4 Methodology

We conduct the experiments for German-English
and Dutch-English cross-lingual embeddings.
Given a bilingual seed dictionary, we use the
learned CCA linear projection (see Section
2) between the monolingual vector spaces to
project German/Dutch embeddings into the En-
glish space. The projected embeddings are then
fed into the sequence labelling model. The se-
quence labelling model is always trained in the
English space using either English training data
(zero-shot) or English training data combined with
projected German/Dutch training data. The model
is tested using projected German/Dutch embed-
dings and German/Dutch test data. We experi-
ment with several factors in the construction of the
bilingual dictionary: source of data, size, and the
frequency of the bilingual dictionary entries in the
domain corpus.

4.1 Training data

Monolingual embeddings For each language,
we train monolingual word2vec embeddings
(Mikolov et al., 2013) on normalised CV data. The
dimension of embeddings is 150, vocabulary size
is 169k, 503k and 286k for English, German and
Dutch respectively (minimum frequency 5).

Corpora In our experiments, we use English
as high resource language and German and Dutch
as low resource. The number of annotated doc-
uments is 4342 for English, 1947 for German and
2383 for Dutch. Having enough resources for Ger-
man/Dutch also allows us to study the impact of
increasing the amount of training data. Each doc-
ument contains on average 11 entities. We split
our data into train, development and test set with
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proportions of 70, 15 and 15% accordingly.

4.2 Bilingual dictionary factors

Source of data (IDP vs MUSE vs domain): We
want to investigate the impact of constructing the
bilingual dictionary from domain-specific words
versus employing generic seed dictionaries: 1)
from Facebook’s MUSE project 1 2) from The
Internet Dictionary Project (IDP) 2. MUSE dic-
tionaries were specifically created for developing
cross-lingual embeddings (Lample et al., 2017),
whereas IDP dictionaries were produced for the
purpose of making royalty-free translating dictio-
naries accessible to the Internet community. For
the domain-specific dictionary, we picked top fre-
quent words (see below) from the source monolin-
gual corpus (German/Dutch) and translated the se-
lected words into English using Yandex Translate
API 3. Stop words were removed and the words
shorter than three characters were filtered out due
to their unreliable translation.

Frequency of bilingual dictionary entries
(high vs lower): We compared choosing most fre-
quent words to those selected from a lower fre-
quency range (between top 5-10%) in our domain-
specific corpus. It has been observed by previous
research that due to the fact that frequent terms are
over-represented in commonly used seed dictio-
naries, the performance of cross-lingual mappings
is much lower on rare words (Nakashole, 2018).
Motivated by this finding we wanted to analyse the
downstream effect of adding rarer terms to the dic-
tionary.

Size of bilingual dictionary (1k vs 5k vs 10k):
We compared seed dictionaries of different size:
1.000, 5.000 and 10.000. Understanding the im-
pact of this factor is important as larger dictionar-
ies are more expensive to create.

Validation: Previous research suggests using
back-translation as a verification step for a trans-
lation pair. We skipped this because we noticed
that certain words are crucial to be included in
the seed dictionary and despite their translation
being correct often they would be invalidated be-
cause of synonyms or suffixes (e.g. persönliche
→ personal → persönlich). Instead, we filter
words whose translations do not reach a frequency

1https://github.com/facebookresearch/
MUSE

2http://www.june29.com/IDP/
3https://pypi.org/project/

yandex-translater/

threshold in the English corpus, where this thresh-
old is tuned on a validation set.

4.3 Model Architecture

Our sequence labelling model is a stacked Bidirec-
tional LSTM with a CRF layer based on (Huang
et al., 2015) with a pre-trained embedding layer.
We used Adam optimiser and trained for 150
epochs. The network’s hyperparameters are tuned
on the English development set.

4.4 Evaluation metrics

As extrinsic evaluation metric of the cross-lingual
embeddings, we use the average F1 score across
the 2 entities we extract (job title and organisation
name). As intrinsic evaluation metric, we use the
precision at 1 (P@1) measured on the MUSE test
sets consisting of 1,500 translation pairs.

5 Results and discussion

Table 1 presents our results on how the 3 bilingual
dictionary factors influence the downstream task
performance and the precision@1 score. We start
with the best practices from previous work (top 5k
frequent words) and change one factor at a time
choosing the best performing setting when moving
to the next factor.

From the first set of rows, we see that using in-
domain seed words improves the task performance
over generic dictionaries. This effect is amplified
in the zero-shot transfer learning scenario. We also
see that using a bilingual dictionary (MUSE) em-
ployed by previous NLP research performs much
better than typical free online resource dictionary
(IDP). These observations are particularly impor-
tant in industry settings where it is a common prac-
tice to use free open-source resources. We also
see that the intrinsic metric (P@1) yields very low
scores and it is uncorrelated with the task metric
e.g. it ranks MUSE and IDP in the reverse order.
This highlights the importance of verifying cross-
lingual embeddings on the downstream task.

We also observe that choosing less frequent
seed words degrades the performance in the zero-
shot case. Qualitative analysis shows that includ-
ing certain high-frequency words can be crucial
for our task: these words are typically section
header words (e.g. Persönliche Angaben (Personal
Information)) or common context words of the en-
tities of interest (e.g. Erfahrung (experience)).
Since these words tend to occur in similar contexts
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Factor combinations DE - EN NL-EN
Joint training Zero shot P@1 Joint training Zero shot P@1

IDP + 5k 79.5 61.5 1.1 - - -
MUSE + 5k 80.4 72.1 0.8 81.4 77.2 2.1
domain + 5k + high freq 81.1 75.8 1.7 81.5 79.1 2.5
domain + 5k + high freq 81.1 75.8 1.7 81.4 79.1 2.5
domain + 5k + lower freq 81.0 70.2 1.0 80.9 71.6 1.9
domain + 10k + high freq 81.5 76.8 1.2 81.6 79.3 2.8
domain + 5k + high freq 81.1 75.8 1.7 81.4 79.1 2.5
domain + 1k + high freq 80.1 72.2 1.2 79.3 77.8 1.6

Table 1: Average F1 and precision@1 score for bilingual dictionary experiments. Joint training uses 200 documents
from the low resource language.

Low resource data DE - EN NL - EN
Monolingual Cross-lingual gain Monolingual Cross-lingual gain

None (zero-shot) - +75.8 - +79.1
200 CVs 77.0 +4.1 75.1 +6.3
500 CVs 83.9 +0.2 80.9 +1.3
Full set 87.1 +0.0 83.5 +0.3

Table 2: Gain from knowledge transfer, averaged F1 score. Full set is 1363 for German and 1678 for Dutch.

as the entities, they tend to be confused with these
entities in the zero-shot setting if they are not in
the dictionary. Being common words, their mean-
ing is quickly picked up when jointly training with
some German/Dutch data.

In terms of vocabulary size, we notice that even
with a smaller 1k domain-specific dictionary we
tend to get a competitive performance. Using 5k
terms seems sufficient, although in line with (Vulić
and Korhonen, 2016) we observe that a larger vo-
cabulary (10k) gives only a slight improvement.

By analysing neighbourhoods of non-seed Ger-
man words projected in the English space, we no-
ticed that even though the nearest English neigh-
bours are related words (e.g. job title words),
often the distances are quite big. Our intuition
is that, specifically for sequence labelling tasks,
adding some training data from the low-resource
language allows the BLSTM model to the learn
about these nearby neighbourhoods and account
for the leeway created by imperfect cross-lingual
projections.

We investigate the impact of increasing the size
of low-resource language data in Table 2. For
these experiments, we use the best performing
seed dictionary (5k high-frequency words from
domain corpus). The results demonstrate that
with a strong English-only CV parsing model and

cross-lingual embeddings we achieve comparable
results to a model trained on only 15% of the low-
resource language. We also observe that the gain
of transfer learning diminishes as we jointly train
with an increasing amount of German data.

6 Conclusions and future work

In this paper, we investigate the best practices
for constructing a bilingual dictionary for learning
domain-specific cross-lingual embeddings. We
show that for our CV parsing task, the dictionary
should be created from top frequency domain-
specific words. A dictionary size of 5k tends to be
sufficient, with limited gains coming from adding
more words. We also show that the less training
data is available in the low-resource language, the
more these best practices matter.

In future work, we plan to extend our research to
cover other language pairs (e.g. Slavic languages)
or more distant pairs (e.g. English-Russian). We
also plan to look at cross-lingual subwords em-
beddings which become crucial for languages with
more complex morphology.
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Abstract

Pre-trained word embeddings are used in
several downstream applications as well as
for constructing representations for sentences,
paragraphs and documents. Recently, there
has been an emphasis on improving the pre-
trained word vectors through post-processing
algorithms. One improvement area is re-
ducing the dimensionality of word embed-
dings. Reducing the size of word embed-
dings can improve their utility in memory
constrained devices, benefiting several real-
world applications. In this work, we present a
novel technique that efficiently combines PCA
based dimensionality reduction with a recently
proposed post-processing algorithm (Mu and
Viswanath, 2018), to construct effective word
embeddings of lower dimensions. Empirical
evaluations on several benchmarks show that
our algorithm efficiently reduces the embed-
ding size while achieving similar or (more of-
ten) better performance than original embed-
dings. To foster reproducibility, we have re-
leased the source code along with paper 1.

1 Introduction

Word embeddings such as Glove (Pennington
et al., 2014) and word2vec Skip-Gram (Mikolov
et al., 2013) obtained from unlabeled text cor-
pora can represent words in distributed dense real-
valued low dimensional vectors which geometri-
cally capture the semantic ‘meaning’ of a word.
These embeddings capture several linguistic regu-
larities such as analogy relationships. Such em-
beddings are of a pivotal role in several natural
language processing tasks.

Recently, there has been an emphasis on apply-
ing post-processing algorithms on the pre-trained
word vectors to further improve their quality. For
example, algorithm in (Mrkšic et al., 2016) tries

1 https://github.com/vyraun/Half-Size

to inject antonymy and synonymy constraints into
vector representations, while (Faruqui et al., 2015)
tries to refine word vectors by using relational in-
formation from semantic lexicons such as Word-
Net (Miller, 1995). (Bolukbasi et al., 2016) tries
to remove the biases (e.g. gender biases) present
in word embeddings and (Nguyen et al., 2016)
tries to ‘denoise’ word embeddings by strength-
ening salient information and weakening noise.
In particular, the post-processing algorithm in
(Mu and Viswanath, 2018) tries to improve word
embeddings by projecting the embeddings away
from the most dominant directions and consider-
ably improves their performance by making them
more discriminative. However, a major issue re-
lated with word embeddings is their size (Ling
et al., 2016), e.g., loading a word embedding ma-
trix of 2.5 M tokens takes up to 6 GB memory
(for 300-dimensional vectors, on a 64-bit system).
Such large memory requirements impose signifi-
cant constraints on the practical use of word em-
beddings, especially on mobile devices where the
available memory is often highly restricted. In this
work we combine the simple dimensionality re-
duction technique, PCA with the post processing
technique of (Mu and Viswanath, 2018), as dis-
cussed above.

In Section 2, we first explain the post processing
algorithm (Mu and Viswanath, 2018) and then our
novel algorithm and describe with an example the
choices behind its design. The evaluation results
are presented in section 3. In section 4, we discuss
the related works, followed by the conclusion.

2 Proposed Algorithm

We first explain the post-processing algorithm
from (Mu and Viswanath, 2018) in section 2.1.
Our main algorithm, along with the motivations is
explained next, in the section 2.2.
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2.1 Post-Processing Algorithm
(Mu and Viswanath, 2018) presents a simple post-
processing algorithm that renders off-the-shelf
word embeddings even stronger, as measured on
a number of lexical-level and sentence-level tasks.
The algorithm is based on the geometrical obser-
vations that the word embeddings (across all rep-
resentations such as Glove, word2vec etc.) have a
large mean vector and most of their energy, after
subtracting the mean vector is located in a sub-
space of about 8 dimensions. Since, all embed-
dings share a common mean vector and all embed-
dings have the same dominating directions, both of
which strongly influence the representations, elim-
inating them makes the embeddings stronger. De-
tailed description of the post-processing algorithm
is presented in Algorithm 1 (PPA).

Algorithm 1: Post Processing Algorithm PPA(X, D)
Data: Word Embedding Matrix X, Threshold Parameter

D
Result: Post-Processed Word Embedding Matrix X
/* Subtract Mean Embedding */

1 X = X - X ;
/* Compute PCA Components */

2 ui = PCA(X), where i = 1,2, . . . ,d. ;
/* Remove Top-D Components */

3 for all v in X do
4 v = v −∑D

i=1(u
T
i · v)ui

5 end

Figure 1 demonstrates the impact of the post-
processing algorithm (PPA, with D= 7) as ob-
served on wiki pre-trained Glove embeddings
(300-dimensions). It compares the fraction of
variance explained by the top 20 principal com-
ponents of the original and post-processed word
vectors respectively 2. In the post-processed word
embeddings none of the top principal components
are disproportionately dominant in terms of ex-
plaining the data, which implies that the post-
processed word vectors are not as influenced by
the common dominant directions as the original
embeddings. This makes the individual word vec-
tors more ‘discriminative’, hence, improving their
quality, as validated on several benchmarks in (Mu
and Viswanath, 2018).

2.2 Proposed Algorithm
This section explains our algorithm, 2 that effec-
tively uses the the PPA algorithm, along with PCA
for constructing lower dimensional embeddings.
2 the total sum of explained variances over the 300 principal
components is equal to 1.0

Figure 1: Comparison of the fraction of variance ex-
plained by top 20 principal components of the Original
and Post-Processing (PPA) applied Glove embeddings
(300D).

Figure 2: Comparison of the fraction of variance ex-
plained by top 20 principal components of the PPA +
PCA-150D baseline and Further Post-Processed Glove
embedding (150D).

We first apply the algorithm 1 (PPA) of (Mu and
Viswanath, 2018) on the original word embed-
ding, to make it more ‘discriminative’. We then
construct a lower dimensional representation of
the post processed ‘purified’ word embedding us-
ing Principal Component Analysis (PCA (Shlens,
2014)) based dimensionality reduction technique.
Lastly, we again ‘purify’ the reduced word embed-
ding by applying the algorithm 1 (PPA) of (Mu and
Viswanath, 2018) on the reduced word embedding
to get our final word embeddings.

To explain the last step of applying the algo-
rithm 1 (PPA) on the reduced word embedding,
consider the Figure 2. It compares the variance ex-
plained by the top 20 principal components for the
embeddings constructed by first post-processing
the Glove-300D embeddings according by Algo-
rithm 1 (PPA) and then transforming the embed-
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dings to 150 dimensions with PCA (labeled as
Post-Processing + PCA); against a further post-
processed version by again applying the Algo-
rithm 1 (PPA) of the reduced word embeddings
3. We observe that even though PCA has been
applied on post-processed embeddings which had
their dominant directions eliminated, the variance
in the reduced embeddings is still explained dis-
proportionately by a few top principal compo-
nents. The re-emergence of this geometrical be-
havior implies that further post-processing (Al-
gorithm 1 (PPA)) could improve the embeddings
further. Thus, for constructing lower-dimensional
word embeddings, we apply the post-processing
algorithm on either side of a PCA dimensionality
reduction of the word vectors in our algorithm.

Finally, from Figures 1 and 2, it is also ev-
ident that the extent to which the top principal
components explain the data in the case of the re-
duced embeddings is not as great as in the case of
the original 300 dimensional embeddings. Hence,
multiple levels of post-processing at different lev-
els of dimensionality will yield diminishing re-
turns as the influence of common dominant direc-
tions decreases on the word embeddings. Details
of reduction technique is given in Algorithm 2.

Algorithm 2: Dimensionality Reduction Algorithm
Data: Word Embedding Matrix X, New Dimension N,

Threshold Parameter D
Result: Word Embedding Matrix of Reduced

Dimension N: X
/* Apply Algorithm 1 (PPA) */

1 X = PPA(X, D) ;
/* Transform X using PCA */

2 X = PCA(X) ;
/* Apply Algorithm 1 (PPA) */

3 X = PPA(X, D) ;

3 Experimental Results

In this section, we evaluate our proposed algo-
rithm on standard word similarity benchmarks and
across a range of downstream tasks. For all our
experiments, we used pre-trained Glove embed-
dings of dimensions 300, 200 and 100, trained
on Wikipedia 2014 and Gigaword 5 corpus (400K
vocabulary) (Pennington et al., 2014) 4 and fast-
Text embeddings of 300 dimensions trained on
Wikipedia using the Skip-Gram model described
in (Bojanowski et al., 2017) (with 2.5M vocabu-
3 the total sum of explained variances over
the 150 principal components is equal to 1.0
4 nlp.stanford.edu/projects/glove/

lary) 5. The next subsection also presents results
using word2vec embeddings trained on Google
News dataset 6.

3.1 Word Similarity Benchmarks
We use the standard word similarity benchmarks
summarized in (Faruqui and Dyer, 2014) for eval-
uating the word vectors.

Dataset: The datasets (Faruqui and Dyer, 2014)
have word pairs (WP) that have been assigned sim-
ilarity rating by humans. While evaluating word
vectors, the similarity between the words is calcu-
lated by the cosine similarity of their vector repre-
sentations. Then, Spearman’s rank correlation co-
efficient (Rho × 100) between the ranks produced
by using the word vectors and the human rankings
is used for the evaluation. The reported metric in
our experiments is Rho × 100. Hence, for bet-
ter word similarity, the evaluation metric will be
higher.
Baselines: To evaluate the performance of our al-
gorithm, we compare it against different schemes
of combining the post-processing algorithm with
PCA 7 as following baselines:

• PCA: Transform word vectors using PCA.

• P+PCA: Apply PPA (Algorithm 1) and then
transform word vectors using PCA.

• PCA+P: Transform word vectors using PCA
and then apply PPA.

These baselines can also be regarded as ab-
lations on our algorithm and can shed light on
whether our intuitions in developing the algorithm
were correct. In the comparisons ahead, we rep-
resent our algorithm as Algo-N ,where N is the
reduced dimensionality of word embeddings. We
use the scikit-learn (Pedregosa et al., 2011) PCA
implementation.

Evaluation Results: First we evaluate our algo-
rithm on the same embeddings against the 3 base-
lines, we then evaluate our algorithm across word
embeddings of different dimensions and different
types. In all the experiments, the threshold param-
eter D in the PPA algorithm was set to 7 and the
new dimensionality after applying the dimension-
ality reduction algorithms, N was set to d

2 , where
5 github.com/facebookresearch/fastText/
6 https://code.google.com/archive/p/word2vec/ 7 Generic
non-linear dimensionality-reduction techniques performed
worse than baselines, presumably because they fail to
exploit the unique geometrical property of word embeddings
discussed in section 2.
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Table 1: Performance (Rho × 100) of Algo. 2 on different embedding and dimensions across multiple datasets.
Bold represent the best value in each column.

Dataset M WS M VE WS RW Men RG MC Sim WS YP
Turk 353 Turk RB -353 Stan -TR -65 -30 Lex -353 -130
-771 SIM -287 -143 -ALL ford -3K -999 -Rel

Glove-300D 65.01 66.38 63.32 30.51 60.54 41.18 73.75 76.62 70.26 37.05 57.26 56.13
PCA-150D 52.47 52.69 56.56 28.52 46.52 27.46 63.35 71.71 70.03 27.21 41.82 36.72

P+PCA-150D 65.59 70.03 63.38 39.04 66.23 43.17 75.34 73.62 69.21 36.71 62.02 55.42
PCA-150D+P 63.86 70.87 64.62 40.14 66.85 40.79 75.37 74.27 72.35 33.81 60.5 50.2

Algo-150D 64.58 71.61 63.01 42.24 67.41 42.21 75.8 75.71 74.8 35.57 62.09 55.91
FastText-300D 66.89 78.12 67.93 39.73 73.69 48.66 76.37 79.74 81.23 38.03 68.21 53.33

Algo-150D 67.29 77.4 66.17 34.24 73.16 47.19 76.36 80.95 86.41 35.47 69.96 50.9
Glove-200D 62.12 62.91 61.99 28.45 57.42 38.95 71.01 71.26 66.56 34.03 54.48 52.21
Algo-100D 61.99 68.43 63.55 36.82 65.41 39.8 74.44 71.53 69.83 34.19 61.56 49.94
Glove-100D 58.05 60.35 61.93 30.23 52.9 36.64 68.09 69.07 62.71 29.75 49.55 45.43
Algo-50D 58.85 66.27 64.09 33.04 62.05 36.64 70.93 64.56 68.79 29.13 59.55 41.95

d is the original dimensionality. The value of pa-
rameter D was set to 7, because from Figure 1,
we observe that the top 7 components are dispro-
portionately contributing to the variance. Choos-
ing a lower D will not eliminate the disproportion-
ately dominant directions, while choosing a higher
D will eliminate useful discriminative information
from the word vectors. We choose N = d

2 as
we observed that going below half the dimensions
(N < d

2 ) significantly hurts performance of all
embeddings.

Results Across Different Baselines: Table 1
shows the results of different baselines on the 12
datasets. As expected from discussions in Sec-
tion 2, our algorithm achieves the best results on
6 out of 12 datasets when compared across all
other baselines. In particular, the 150-dimension
word embeddings constructed with our algorithm
performs better than the 300-dimension embed-
dings in 7 out of 12 datasets with an average im-
provement of 2.74% across the 12 datasets, thus
performing significantly better than PCA, PCA+P
baselines and beating P+PCA baseline in 8 out of
the 12 tasks.

Results Across Different Embeddings: Table 1
also shows the results of our algorithm on 300-
dimension fastText embeddings, 100-dimension
Glove embeddings and 200-dimension Glove em-
beddings. In fastText embeddings, the 150-
dimension word vectors constructed using our al-
gorithm gets better performance on 4 out of 12
datasets when compared to the 300-dimension em-
beddings. Overall, the 150-dimension word vec-
tors have a cumulative score of 765.5 against the
771.93 of the 300-dimension vectors. The per-
formance is similar to the 300-dimension em-
beddings with an average performance decline of

0.53% across the 12 datasets. With Glove em-
beddings of 100 and 200 dimensions, our algo-
rithm leads to significant gains, with average per-
formance improvements of 2.6% and 3% respec-
tively over the original embeddings and achieves
much better performance on 8 and 10 datasets re-
spectively. Another observation is the embeddings
generated by reducing Glove-200D to 100 dimen-
sions using our algorithm outperform the original
Glove-100D embeddings, with an average perfor-
mance improvement of 6% across all 12 datasets.
Hence, empirical results validate that our algo-
rithm is effective in constructing lower dimension
word embeddings, while maintaining similar or
better performance than the original embeddings.

3.2 Downstream Tasks

Embeddings obtained using the proposed dimen-
sionality reduction algorithm can be used as direct
features for downstream supervised tasks. We ex-
perimented with textual similarity tasks (27 data-
sets) and text classification tasks (9 data-sets) to
show the effectiveness of our algorithm. We used
the SentEval (Conneau and Kiela, 2018) toolkit for
all our experiments. In all cases, sentences were
represented as the mean of their words’ embed-
dings and in the classification tasks, logistic re-
gression was used as the classifier. Table 2 give
an overview of the downstream tasks we evaluated
our reduced representation.

Table 2: Downstream Task Overview

Task # of Datasets
Textual Classification Task 9
Sentence Similarity Task 5 (27)
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Sentence Similarity Task: We further evaluate
our algorithm against the baselines on the Se-
mEval dataset (2012-2016) which involved 27 se-
mantic textual similarity (STS) tasks (2012 - 2016)
(Agirre et al., 2012), (Agirre et al., 2013), (Agirre
et al., 2014), (Agirre et al., 2015), and (Agirre
et al., 2016). The objectives of these tasks are to
predict the similarity between two sentences. We
used the average Spearmans rank correlation coef-
ficient (Rho × 100) between the predicted scores
and the ground-truth scores as the evaluation met-
ric. Table 4 show performance of all reduction
methods with varying reduction dimensions. Fig-
ure 3 - 8 compare performance of all reduction
methods with varying reduction dimensions (in
all these figures, X-axis represents the number of
dimensions of reduced embeddings while Y-axis
represents the score: Rho × 100). Similar to pre-
vious observations8 our reduction technique out-
performs all other baselines.

Textual Classification Task: We also performed
the experiments on several textual classifica-
tion tasks using SentEval (Conneau and Kiela,
2018) toolkit, which includes binary classification
(MR, CR, SUBJ, MPQA), multiclass classification
(SST-FG, TREC), entailment (SICK-E), seman-
tic relatedness (STS-B) and Paraphrase detection
(MRPC) tasks, across a range of domains (such as
sentiment, product reviews etc). We observe that
our embedding is effective on downstream clas-
sification tasks and can effectively reduce the in-
put size and the model parameters without distinc-
tively reducing the performance (<= 1.0%). Ta-
ble 3 compares the accuracy of reduced embed-
dings for multiple dimensions to the original em-
beddings on classification for several datasets. It
can be clearly seen that the reduced embeddings
at 200-D perform comparable to the orignal em-
beddings. The results confirm that 9 one can ef-
fectively reduce the input size and the model pa-
rameters without distinctively reducing the perfor-
mance (<= 1.0%).

3.3 Analysis and Discussion
The performance of reduced embeddings matches
that of unreduced embeddings in a range of word
8 We only report the results with Glove embedding, how-
ever we obtain similar observations with other embeddings
such as fasttText and word2vec. 9 We used the com-
monly used pre-trained 300 dimensional embeddings trained
on wikipedia for our experiments. Lower-dimensional pre–
trained embeddings trained on wikipedia were unavailable for
most embedding types.

Figure 3: STS-12

Figure 4: STS-13

Figure 5: STS-14
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Table 3: Comparison of performance (in terms of test accuracy) on several classification datasets with original
embeddings and the reduced embeddings obtained using the proposed algorithm. Bold represents the reduced
embeddings performance with is within <= 1% of the original 300D dimensional embeddings.

Model MR CR SUBJ MPQA STS-B SST TREC SICK-E MRPC
-FG

Glove-300D 75.59 78.31 91.58 86.88 78.03 41 68 78.49 71.48
Algo-50D 66.52 70.49 85.6 77.5 68.92 35.48 50 73.25 71.01

Algo-100D 70.43 75.34 88.31 82.3 71.99 38.42 55 75.6 71.42
Algo-150D 73.45 77.43 89.86 85.59 76.33 40.18 59.6 76.76 71.54
Algo-200D 75.23 78.17 90.61 86.51 78.09 41.36 65.4 77.35 73.1

word2vec-300D 77.65 79.26 90.76 88.3 61.42 42.44 83 78.24 72.58
Algo-50D 71.84 72.79 88.1 83.53 54.89 39.37 64.6 73.03 71.07

Algo-100D 73.89 75.65 89.56 84.81 59.54 39.95 69 74.97 71.42
Algo-150D 75.88 77.06 90.01 86.13 61.42 41.27 73.4 76.42 71.19
Algo-200D 76.77 77.88 90.15 86.9 61.5 41.45 77.4 76.98 71.77

fastText-300D 78.23 80.4 92.52 87.67 68.33 45.02 85.8 79.2 73.04
Algo-50D 71.23 75.36 87.88 82.25 57.01 38.87 66.8 71.91 72.06

Algo-100D 73.94 77.64 89.88 84.34 62.67 40.86 72.8 74.79 73.16
Algo-150D 75.52 78.2 90.96 86.18 63.46 41.4 75.2 75.06 73.39
Algo-200D 77.18 79.76 91.6 86.64 64.32 43.48 77.4 76.76 72.93

Figure 6: STS-15

Figure 7: STS-16

Figure 8: STS Average

and sentence similarity tasks. Considering the fact
that semantic textual similarity (Majumder et al.,
2016) is an important task across several fields,
the resulting gains in efficiency, resulting from an
efficient embeddings reduction, can prove useful
to a range of applications. We obtain good per-
formance on the similarity tasks since the pro-
posed algorithm effectively exploits the geome-
try of the word embeddings (Mu and Viswanath,
2018) to reduce irrelevant noise in the word rep-
resentations. In the sentence classification tasks,
the reduced embeddings suffer from a slight per-
formance loss in terms of test accuracy, which we
suspect is due to the limitation of variance based
techniques themselves in the context of word em-
beddings, i.e. owing to the disproprortionate dis-
tribution of linguistic features across the princi-
pal components themselves. Therefore, the loss of
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STS-12 200 150 100 50
PCA 51.32 50.39 48.68 46.15

ALGO 53.76 53.34 51.56 48.46
PCA-PPA 51.76 51.26 49.12 42.45
PPA-PCA 51.91 50.91 49.27 46.73

Glove 51.42 51.26 51.1 51.33
STS-13 200 150 100 50

PCA 46.51 44.16 40.8 35.47
ALGO 58.47 58.08 53.51 48.42

PCA-PPA 56.71 54.26 50.11 43.46
PPA-PCA 56.98 55.12 52.43 45.94

Glove 47.1 46.19 45.27 45.06
STS-14 200 150 100 50

PCA 53.33 51.66 49.86 44.95
ALGO 62.33 62.32 60.85 56.4

PCA-PPA 61.62 61.04 58.59 54.24
PPA-PCA 61.66 61.13 58.84 54.67

Glove 52.56 51.44 50.31 49.71
STS-15 200 150 100 50

PCA 57.11 55.82 53.81 49.91
ALGO 68.1 67.35 66.46 60.95

PCA-PPA 65.49 64.78 61.17 56.23
PPA-PCA 65.48 64.92 62.49 57.55

Glove 56.18 55.04 53.89 53.29
STS-16 200 150 100 50

PCA 54.32 52.86 49.16 44.56
ALGO 67.3 66.89 64.48 60.01

PCA-PPA 65.06 63.86 60.07 55.27
PPA-PCA 65.36 64.12 61.16 54.89

Glove 53.52 52.33 51.14 51.8
STS Average 200 150 100 50

PCA 52.52 50.98 48.29 35.31
ALGO 61.99 61.6 59.37 54.85

PCA-PPA 60.13 59.04 55.81 50.33
PPA-PCA 60.28 59.24 56.84 51.96

Glove 52.16 51.25 50.34 50.24

Table 4: Performance in terms of (Rho × 100) be-
tween the predicted scores and the ground-truth scores
for STS tasks.

information which is decorrelated with principal
components (or the amount of variance explained)
leads to decline in performance, since those prop-
erties of the embedding space are lost upon dimen-
sionality reduction.

Another interesting analysis is to compare the
performance of the reduced embeddings against
state-of-the-art neural techniques on each of the
datasets in Tables 3 and 4. In particular, the per-
formance of the reduced embeddings of 200 di-

mensions (using Glove) obtained using the pro-
posed algorithm suffers from an average drop of
4.1% in Spearman’s Rank correlation scores (x
100) across the five sentence similarity datasets in
Table 4, when compared against 4096 (20X more)
dimensional sentence encoding obtained using In-
ferSent 10 (Conneau et al., 2017). In the 9 sen-
tence classification datasets, described in Table 3,
the 200 dimensional reduced embeddings lead to
an average drop of 7.3% in accuracy scores when
compared against the 4096 dimensional Infersent
encodings. If we exclude TREC (on which all pre-
trained embeddings perform poorly), then the 200
dimensional embeddings lead to an average drop
of 5.4% when compared against the 4096 dimen-
sional InferSent encodings, across the remaining 8
sentence classification tasks in Table 3.

4 Comparison with Related Work

Most of the existing work on word embedding
size reduction focuses on quantization (e.g. (Lam,
2018), which requires retraining with a different
training objective), compression or limited preci-
sion training. In particular, (Ling et al., 2016)
tries to reduce the embeddings’ memory footprint
by using limited precision representation during
word embedding use and training while (Andrews,
2016) tries to compress word embeddings using
different compression algorithms and (Shu and
Nakayama, 2017) uses compositional coding ap-
proach for constructing embeddings with fewer
parameters. There hasn’t been much study on di-
mensionality reduction for word embeddings, with
a general consensus on the use of publicly re-
leased pre-trained word embeddings of 300 di-
mensions, trained on large corpora (Yin and Shen,
2018). A recent work (Yin and Shen, 2018) has
addressed the issue of exploring optimal dimen-
sionality by changing the training objective, in-
stead of dimensionality reduction. However, in
this paper we mainly focus on the dimensionality
reduction of the widely used pre-trained word em-
beddings (word2vec, Glove, fastText) and show
that we can half the standard dimensionality by
effectively exploiting the geometry of the embed-
ding space. Therefore, our work is the first to
extensively explore directly reducing the dimen-
sionality of existing/pre-trained word embeddings,
making it both different and complementary to the
existing methods.
10 https://github.com/facebookresearch/InferSent
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5 Conclusions and Future Work

Empirical results show that our method is effec-
tive in constructing lower dimension word embed-
dings, having similar or (more often) better perfor-
mance than the original embeddings. This could
allow the use of word embeddings in memory-
constrained environments. In future, an interest-
ing area to explore would be the application of
compressed and limited precision representations
on top of dimensionality reduction to further re-
duce the size of the word embeddings. Deriv-
ing an algorithm to choose D, N and the lev-
els of post-processing automatically, while opti-
mizing for performance could also make the di-
mensionality reduction pipeline simpler for down-
stream applications. Further, owing to the growing
popularity of contextualized embeddings such as
ElMo (Peters et al., 2018) and BERT (Devlin et al.,
2018), it would be interesting to explore whether
the geometric intuitions used for developing the
proposed algorithm for word embedding dimen-
sionality reduction could be leveraged for contex-
tualized embeddings as well.
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Abstract

Most word embedding algorithms such as
word2vec or fastText construct two sort of vec-
tors: for words and for contexts. Naive use of
vectors of only one sort leads to poor results.
We suggest using indefinite inner product in
skip-gram negative sampling algorithm. This
allows us to use only one sort of vectors with-
out loss of quality. Our “context-free” cf al-
gorithm performs on par with SGNS on word
similarity datasets.

1 Introduction

Vector representation of words are widely used in
NLP tasks. Two approaches to word embeddings
are usually contrasted: implicit (word2vec-like)
and explicit (SVD-like). Implicit models are usu-
ally faster and consume less memory than their ex-
plicit analogues.

Typically, word embedding algorithms produce
two matrices both for “words” and “contexts”.
Usually, contexts are the words themselves. It is
believed that word and context vectors cannot be
equated to each other.

In practice, however, only the vectors of one
sort are considered. For example, typical solutions
to word similarity or analogy problems use only
the inner products of word vectors.

We present a modified skip-gram negative sam-
pling algorithm that produces related word and
context vectors. One may say that some compo-
nents of our word and context vectors are equal,
while other components have different signs. An-
other point of view is to say that word and context
vectors are completely equal, but the inner prod-
uct between them is indefinite. This relation was
suggested by the properties of explicit SVD em-
beddings.

2 Preliminaries

We briefly recall the skip-gram negative sampling
(SGNS) algorithm implemented in popular pro-
grams word2vec (Mikolov et al., 2013a,b) and
fastText (Bojanowski et al., 2017). Given row
vectors of a current wordw, its context c0 and neg-
ative context samples c1, . . . , ck, SGNS algorithm
computes the loss

L = − lnσ(wcT0 )−
k∑

j=1

lnσ(−wcTj ), (1)

where σ(x) = 1
1+e−x is the sigmoid function.

Starting from random initial approximation of
word vectors, the algorithm uses stochastic gradi-
ent descent (SGD) for optimization. The intuition
is the following: the word vector should be similar
to the true context vector and dissimilar to random
negative contexts. Due to the properties of σ(x),
the gradient and update formulas look simple.

Let n be the size of the vocabulary, and d be
the dimension of embeddings. Let W and C be
n × d matrices of word (respectively, context)
vectors written in rows. The SGNS loss (1) de-
pends only on elements of WCT , and does not
depend on W or C separately. The optimal solu-
tion of SGNS is not unique: the transformation
W 7→ WS, C 7→ C

(
S−1

)T for an invertible
d×d-matrix S, gives an equivalent solution. How-
ever, such transformation could change the inner
products between word vectors dramatically if S
is not orthogonal. Nevertheless, SGNS produces a
“good” solution without any regularization. This
phenomenon is not well understood, and can be
seen as “implicit regularization” of SGD.

Levy and Goldberg showed that the implicit ma-
trix M = WCT tends to the shifted PMI matrix
M when d is sufficiently large (Levy and Gold-
berg, 2014). HereMi,j = PMI(wi, wj) − log k,
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where

PMI(wi, wj) = log
P (wiwj)

P (wi)P (wj)

is the pointwise mutual information of the pair of
wordswi,wj , and k is the amount of negative sam-
ples. Thus, SGNS can be considered as an implicit
matrix factorization problem.

We recall that a (compact) singular value de-
composition (SVD) of a real-valued m×n-matrix
M of rank r is a decomposition M = UΣV T ,
where U and V are respectively m × r and n × r
matrices with orthogonal columns, and Σ is r × r
diagonal matrix with non-zero singular values on
diagonal. We refer to (Golub and Van Loan, 2012)
for details. SVD embeddings are obtained from
truncated SVD decomposition M ≈ UdΣdV

T
d ,

where only d top singular values and vectors are
kept. The common way is to take W = Ud

√
Σd

and C = Vd
√

Σd.

3 Main result

First of all, we make an observation about SVD
embeddings. We shall use it further to modify the
SGNS algorithm.

3.1 SVD of real symmetric matrices

Proposition. Let M be a real-valued symmetric
n× n-matrix.

1. There exists a decompositionM = WDW T ,
where D = diag(±1).

2. There exists a compact SVD M = UΣV T

such that V = UD.

3. If all singular values of M are different, then
all singular value decompositions of M have
this form1.

In other words, the corresponding columns of U
and V either coincide, or differ in sign.

Proof. All eigenvalues of a real symmetric ma-
trix are real. Moreover, M has an eigendecompo-
sition M = CΛCT , where Λ = diag(λi) is a di-
agonal matrix of eigenvalues, and C is an orthog-
onal matrix. Let r be the rank of M . We may re-
move columns in C and Λ that correspond to zero
eigenvalues and assume that C is n×r-matrix and

1This is also valid for a more general case when equal
singular values of M correspond to the eigenvalues of the
same sign.

Λ is r× r-matrix with non-zero eigenvalues on di-
agonal. Note that non-zero singular values σi of
M are absolute values of λi.

1. Let Σ = diag(σi) be a diagonal matrix of
non-zero singular values. Then Λ = ΣD =√

ΣD
√

Σ, where

Dii =

{
1, if λi > 0,

−1, if λi < 0.

Now take W = C
√

Σ.

2. Write M as CΣDCT and take U = C, V =
CD.

3. If all singular values are different, then SVD
is determined uniquely up to a simultaneous
change of signs in some columns of U and
V . Take the SVD constructed above and note
that the relation V = UD is preserved after
these transformations.

We denote by q the amount of −1 in D. Due to
the Sylvester’s law of inertia, it is uniquely deter-
mined by M and equals to the amount of negative
eigenvalues of M .

3.2 Negative eigenvalues of word relation
matrices

Consider an n × n-matrix M = (f(wi, wj)) de-
scribing the relation between the wordswi andwj .
For example, f(wi, wj) may be the shifted PPMI,
as suggested in (Levy and Goldberg, 2014):

f(wi, wj) = max (0, PMI(wi, wj)− log k) .

As a rule, the relation f is symmetric, and hence
M is symmetric too.

Let’s look at the SVD embeddings obtained
from this matrix. Let M = UΣV T be an SVD,
and M ≈ Md = UdΣdV

T
d be its truncated ap-

proximation. Then symmetric SVD embeddings
are W = Ud

√
Σd and C = Vd

√
Σd. In the fol-

lowing, we will naturally assume that top d singu-
lar values ofM are different and non-zero: all real
cases are just like that. By the proposition we have
that some columns ofW andC coincide, while the
others differ in sign. As a consequence, we ob-
tain that for such SVD embeddings word and con-
text vectors are equally good in applied problems,
because inner products (wiwj) and (cicj) are the
same. We would like to construct implicit SGNS-
like embeddings with similar properties.
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The amount of negative eigenvalues of M mea-
sures the deviation from the positive definiteness
in some sense. To estimate it, we construct shifted
PPMI matrices for Wikipedia corpora in three dif-
ferent languages (English, French and Russian).
Each corpus contains 1M articles. We measure
the amount of negative eigenvalues among top by
magnitude eigenvalues. The results for k = 1
(pure PPMI matrix, no shift) and for k = 5 are
presented in Tables 1 and 2, respectively. We see
that the rate of negative eigenvalues is about 11–
13% for k = 1 and about 7–8% for k = 5. Sur-
prisingly, this rate actually does not depend on the
language.

corpus \ dimension 100 200 300
English Wikipedia 15 27 39
French Wikipedia 10 22 34
Russian Wikipedia 11 22 31

Table 1: Amount of negative eigenvalues in the trun-
cated SVD of PPMI matrix (k = 1, i. e., no shift).

corpus \ dimension 100 200 300
English Wikipedia 9 16 24
French Wikipedia 7 15 22
Russian Wikipedia 7 14 20

Table 2: Amount of negative eigenvalues in the trun-
cated SVD of shifted PMI matrix with k = 5.

3.3 Context-free SGNS algorithm
Recall that SGNS loss depends on the inner prod-
ucts of words and contexts. Let’s fix the matrix

D = diag(−1, . . . , −1︸ ︷︷ ︸
q

, 1, 1, . . . , 1︸ ︷︷ ︸
p=d−q

)

specifying indefinite inner product in the embed-
ding space. The amount of minus ones in this ma-
trix, q, will be a hyperparameter of our algorithm.
Next, we equate word and context vectors to each
other. This corresponds to the implicit factoriza-
tion WDW T instead of WCT .

Thus, we replace the initial SGNS loss (1) with

Lq = − lnσ(wDwT
0 )−

k∑

j=1

lnσ(−wDwT
j ).

The solution of this new optimization problem
is also not unique. Replacing W with WS for

any matrix S that preserves D, i. e., such that
SDST = D, yields another solution. Neverthe-
less, the solution set in our case is “smaller” in
some sense than in the pure SGNS case, where S
may be any invertible matrix.

Since we got rid of context vectors, we call this
algorithm context-free SGNS2 and denote it cf.

4 Experimental results

4.1 Training setup
We train word embeddings on the English
Wikipedia dump. We preprocess this dump us-
ing gensim.corpora.wikicorpus package3 and take
a subsample of 100K articles. Our corpus consists
of approximately 175M words with n ≈ 312000.
We use fastText4 skipgram mode with the default
values of parameters and without ngrams (-maxn
0) as a vanilla SGNS implementation. We im-
plement our model by modifying the C++ im-
plementation of fastText5. We learn cf vectors
of dimension d = 100 and 100 + q for q =
0, 5, 10, 15, 20, 25. Vectors of dimension 100 + q
were projected to 100 “positive” components.

4.2 Datasets
Datasets for word similarity evaluation consist of
pairs of words rated by humans. We use the
following well-known English similarity datasets:
MEN-3k (Bruni et al., 2014), MTurk-287 (Ha-
lawi et al., 2012), RW-STANFORD (Luong et al.,
2013), SimLex-999 (Hill et al., 2015), SimVerb-
3500 (Gerz et al., 2016), VERB-143 (Baker et al.,
2014), and WS-353 (Finkelstein et al., 2002) split-
ted into similarity and relatedness parts (Agirre
et al., 2009). We use the evaluation code (Faruqui
and Dyer, 2014) for computing Spearman rank
correlation ρ between the similarity scores and the
annotated ratings.

4.3 Results
Table 3 shows the results for word vectors of di-
mension 100 with q negative components in D.
The best results are written in bold, and the best
cf results are underlined. We see that q = 0,
i. e., the case of positive semidefinite approxima-
tion, has the worst performance. The better perfor-

2Not to be confused with context-free grammars.
3https://radimrehurek.com/gensim/

corpora/wikicorpus.html.
4https://fasttext.cc/.
5https://github.com/jen1995/fastText/

tree/sgns-loss.
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Dataset SGNS q = 0 q = 5 q = 10 q = 15 q = 20 q = 25

MEN-TR-3k .7314 .6790 .7234 .7185 .7165 .7124 .7092
MTurk-287 .6668 .6335 .6574 .6604 .6615 .6609 .6725
RW-STANFORD .3801 .2862 .4094 .4202 .4223 .4151 .4090
SIMLEX-999 .3323 .2520 .3141 .3194 .3126 .3098 .3226
SimVerb-3500 .2022 .1317 .1890 .1948 .1975 .1942 .1965
VERB-143 .3000 .2995 .3323 .3304 .3498 .3834 .3595
WS-353-REL .6648 .6142 .6372 .6594 .6389 .6306 .6296
WS-353-SIM .7612 .7079 .7508 .7538 .7525 .7506 .7332
average .4380 .3700 .4346 .4384 .4382 .4345 .4340

Table 3: Word similarity for d = 100.

Dataset SGNS q = 0 q = 5 q = 10 q = 15 q = 20 q = 25

MEN-TR-3k .7314 .6790 .7333 .7348 .7351 .7371 .7370
MTurk-287 .6668 .6335 .6612 .6697 .6719 .6746 .6645
RW-STANFORD .3801 .2862 .4015 .4091 .4069 .4022 .3999
SIMLEX-999 .3323 .2520 .3138 .3127 .3199 .3166 .3235
SimVerb-3500 .2022 .1317 .1926 .1917 .1894 .1905 .1914
VERB-143 .3000 .2995 .3362 .3148 .3141 .3285 .3315
WS-353-REL .6648 .6142 .6673 .6714 .6765 .6718 .6741
WS-353-SIM .7612 .7079 .7627 .7476 .7577 .7554 .7480
average .4380 .3700 .4382 .4394 .4394 .4392 .4394

Table 4: Word similarity for p = 100 (only “positive” components of p+ q-dimensional cf vectors were taken).

mance of cf is achieved at q = 10 or q = 15. This
argees with empirical results of Subsection 3.2. In
general, cf is either on par with SGNS, or slightly
loses. In the second experiment we learn cf vec-
tors of higher dimension 100 + q and projected
them to 100 “positive” components. These results
are shown in Table 4. Starting from q = 5, they
are slightly better than SGNS.

5 Related work

There were several attempts to establish a connec-
tion between word and context vectors. In (Li
et al., 2017) a PMI matrix is approximated by a
positive semidefinite matrix of the form WW T .
Dependencies between word and context vec-
tors for word2vec SGNS model were studied
in (Mimno and Thompson, 2017).

In (Allen et al., 2018) it is suggested that word
and context vectors should be conjugated in the
complex space. Our model can be reformulated in
terms of complex vectors too in the case p = q,
but we prefer to stay in reals. One of the problems
with complex embedding is that σ(z) is not holo-
morphic in the whole complex plane, and should
be replaced with σ(|z|) or σ(Re z). Complex-

valued embeddings are also discussed in (Trouil-
lon et al., 2016), where a complex decomposition
like M = ReUΛŪT is suggested.

In (Assylbekov and Takhanov, 2019) it was
conjectured that context vectors are reflections of
word vectors in half the dimensions. Our result
is similar, but we suggest using lower amount of
reflections. Perhaps this difference is due to the
fact that we consider shifted PPMI matrices, while
they consider pure PMI matrices.

Embeddings in hyperbolic space with
Minkowski metric was suggested in (Leimeister
and Wilson, 2018). In (Soleimani and Matwin,
2018) there is an erroneous statement that a
thresholded PMI matrix, as well as any symmetric
matrix, has SVD decomposition UΣUT : in fact it
is true only for positive semidefinite matrices.

Non-uniqueness of SGNS solutions was ad-
dressed in (Fonarev et al., 2017) and (Mu et al.,
2018), resulting in new models. Implicit regular-
ization of SGD in neural networks and in matrix
factorization problems was studied in (Gunasekar
et al., 2017; Neyshabur et al., 2017; Ma et al.,
2018), but SGNS loss was not considered directly
in these works.
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6 Conclusion

We proposed cf, an alternative to SGNS algo-
rithm that do not use context vectors. Instead,
indefinite inner product between word vectors is
used. Our algorithm shows similar results com-
pared to SGNS.

The phenomenon of implicit regularization of
SGNS, as well as the problem of finding the lin-
guistic interpretation of “negative” components of
word vectors in our algorithm, deserve further in-
vestigation.
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Abstract

The scarcity of labeled training data across
many languages is a significant roadblock
for multilingual neural language process-
ing. We approach the lack of in-language
training data using sentence embeddings
that map text written in different lan-
guages, but with similar meanings, to
nearby embedding space representations.
The representations are produced using a
dual-encoder based model trained to max-
imize the representational similarity be-
tween sentence pairs drawn from parallel
data. The representations are enhanced
using multitask training and unsupervised
monolingual corpora. The effectiveness of
our multilingual sentence embeddings are
assessed on a comprehensive collection
of monolingual, cross-lingual, and zero-
shot/few-shot learning tasks.

1 Introduction
Sentence embeddings are broadly useful for a di-
verse collection of downstream natural language
processing tasks (Cer et al., 2018; Conneau et al.,
2017; Kiros et al., 2015; Logeswaran and Lee,
2018; Subramanian et al., 2018). Sentence em-
beddings evaluated on downstream tasks in prior
work have been trained on monolingual data, pre-
venting them from being used for cross-lingual
transfer learning. However, recent work on learn-
ing multilingual sentence embeddings has pro-
duced representations that capture semantic simi-
larity even when sentences are written in different
languages (Eriguchi et al., 2018; Guo et al., 2018;
Schwenk and Douze, 2017; Singla et al., 2018).
We explore multi-task extensions of multilingual
models for cross-lingual transfer learning.

∗equal contribution

We present a novel approach for cross-lingual
representation learning that combines methods for
multi-task learning of monolingual sentence rep-
resentations (Cer et al., 2018; Subramanian et al.,
2018) with recent work on dual encoder meth-
ods for obtaining multilingual sentence represen-
tations for bi-text retrieval (Guo et al., 2018; Yang
et al., 2019). By doing so, we learn representa-
tions that maintain strong performance on the orig-
inal monolingual language tasks, while simulta-
neously obtaining good performance using zero-
shot learning on the same task in another language.
For a given language pair, we construct a multi-
task training scheme using native source language
tasks, native target language tasks, and a bridging
translation task to encourage sentences with iden-
tical meanings, but written in different languages,
to have similar embeddings.

We evaluate the learned representations on sev-
eral monolingual and cross-lingual tasks, and pro-
vide a graph-based analysis of the learned rep-
resentations. Multi-task training using additional
monolingual tasks is found to improve perfor-
mance over models that only make use of parallel
data on both cross-lingual semantic textual sim-
ilarity (STS) (Cer et al., 2017) and cross-lingual
eigen-similarity (Søgaard et al., 2018). For Eu-
ropean languages, the results show that the addi-
tion of monolingual data improves the embedding
alignment of sentences and their translations. Fur-
ther, we find that cross-lingual training with addi-
tional monolingual data leads to far better cross-
lingual transfer learning performance.1

1Models based on this work are available at https:
//tfhub.dev/ as: universal-sentence-encoder-xling/en-
de, universal-sentence-encoder-xling/en-fr, and universal-
sentence-encoder-xling/en-es. A large multilingual model is
available as universal-sentence-encoder-xling/many.
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Figure 1: Multi-task dual-encoder model with native tasks and a bridging translation task. The terms PAR, INP, RES refer
to parent, input, and response respectively. ENC refers to the shared encoder g, FC refers to fully connected layers, and DOT
refers to dot product. Finally, FEATURE TRANSFORM refers to the feature vector used for natural language inference.

2 Multi-Task Dual-Encoder Model

The core of our approach is multi-task training
over problems that can be modeled as ranking
input-response pairs encoded via dual-encoders
(Cer et al., 2018; Henderson et al., 2017; Yang
et al., 2018). Cross-lingual representations are ob-
tained by incorporating a translation bridge task
(Gouws et al., 2015; Guo et al., 2018; Yang et al.,
2019). For input-response ranking, we take an in-
put sentence sIi and an associated response sen-
tence sRi , and we seek to rank sRi over all other
possible response sentences sRj ∈ SR. We model
the conditional probability P (sRi | sIi ) as:

P (sRi | sIi ) =
eϕ(s

I
i ,s

R
i )

∑
sRj ∈SR eϕ(s

R
i ,sRj )

ϕ(sIi , s
R
j ) = gI(sIi )

⊤gR(sRj )

(1)

Where gI and gR are the input and response
sentence encoding functions that compose the
dual-encoder. The normalization term in eq. 1 is
computationally intractable. We follow Hender-
son et al. (2017) and instead choose to model an
approximate conditional probability P̃ (sRi | sIi ):

P̃ (sRi | sIi ) =
eϕ(s

I
i ,s

R
i )

∑K
j=1 e

ϕ(sRi ,sRj )
(2)

Where K denotes the size of a single batch of
training examples, and the sRj corresponds to the
response sentences associated with the other input
sentences in the same batch as sIi . We realize gI

and gR as deep neural networks that are trained to

maximize the approximate log-likelihood, P̃ (sRi |
sIi ), for each task.

To obtain a single sentence encoding function
g for use in downstream tasks, we share the first
k layers of the input and response encoders and
treat the final output of these shared layers as g.
The shared encoders are used with the ranking for-
mulation above to support conversational response
ranking (Henderson et al., 2017), a modified ver-
sion of quick-though (Logeswaran and Lee, 2018),
and a supervised NLI task for representation learn-
ing similar to InferSent (Conneau et al., 2017).
To learn cross-lingual representations, we incor-
porate translation ranking tasks using parallel cor-
pora for the source-target pairs: English-French
(en-fr), English-Spanish (en-es), English-German
(en-de), and English-Chinese (en-zh).

The resulting model structure is illustrated in
Figure 1. We note that the conversational response
ranking task can be seen as a special case of Con-
trastive Predictive Coding (CPC) (van den Oord
et al., 2018) that only makes predictions one step
into the future.

2.1 Encoder Architecture

Word and Character Embeddings. Our sen-
tence encoder makes use of word and character n-
gram embeddings. Word embeddings are learned
end-to-end.2 Character n-gram embeddings are
learned in a similar manner and are combined at
the word-level by summing their representations
and then passing the resulting vector to a single

2Using pre-trained embeddings, did not improve perfor-
mance during preliminary experiments.
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feedforward layer with tanh activation. We av-
erage the word and character embeddings before
providing them as input to g.

Transformer Encoder. The architecture of the
shared encoder g consists of three stacked trans-
former sub-networks,3 each containing the feed-
forward and multi-head attention sub-layers de-
scribed in Vaswani et al. (2017). The transformer
output is a variable-length sequence. We aver-
age encodings of all sequence positions in the fi-
nal layer to obtain our sentence embeddings. This
embedding is then fed into different sets of feed-
forward layers that are used for each task. For our
transformer layers, we use 8 attentions heads, a
hidden size of 512, and a filter size of 2048.

2.2 Multi-task Training Setup
We employ four unique task types for each lan-
guage pair in order to learn a function g that is
capable of strong cross-lingual semantic match-
ing and transfer learning performance for a source-
target language pair while also maintaining mono-
lingual task transfer performance. Specifically, we
employ: (i) conversational response prediction,
(ii) quick thought, (iii) a natural language infer-
ence, and (iv) translation ranking as the bridge
task. For models trained on a single language pair
(e.g., en-fr), six total tasks are used in training, as
the first two tasks are mirrored across languages.4

Conversational Response Prediction. We
model the conversational response prediction task
in the same manner as Yang et al. (2018). We min-
imize the negative log-likelihood of P̃ (sRi | sIi ),
where sIi is a single comment and sRi is its asso-
ciated response comment. For the response side,
we model gR(sRi ) as g(sRi ) followed by two fully-
connected feedforward layers of size 320 and 512
with tanh activation. For the input representation,
however, we simply let gI(sIi ) = g(sIi ).

5

Quick Thought. We use a modified version of
the Quick Thought task detailed by Logeswaran
and Lee (2018). We minimize the sum of the nega-
tive log-likelihoods of P̃ (sRi | sIi ) and P̃ (sPi | sIi ),

3We tried up to six stacked transformers, but did not no-
tice a significant difference beyond three.

4We note that our architecture can scale to models trained
on > 2 languages. Preliminary experiments using more than
two languages achieve promising results, but we consider
fully evaluating models trained on larger collections of lan-
guages to be outside the scope of the current work.

5In early experiments, letting the optimization of the con-
versational response task more directly influence the parame-
ters of the underlying sentence encoder g led to better down-
stream task performance.

where sIi is a sentence taken from an article and
sPi and sRi are its predecessor and successor sen-
tences, respectively. For this task, we model all
three of gP (sPi ), gI(sIi ), and gR(sRi ) by g fol-
lowed by separate, fully-connected feedforward
layers of size 320 and 512 and using tanh acti-
vation.

Natural Language Inference (NLI). We also
include an English-only natural language infer-
ence task (Bowman et al., 2015). For this task,
we first encode an input sentence sIi and its corre-
sponding response hypothesis sRi into vectors u1
and u2 using g. Following Conneau et al. (2017),
the vectors u1, u2 are then used to construct a re-
lation feature vector (u1, u2, |u1 − u2|, u1 ∗ u2),
where (·) represents concatenation and ∗ repre-
sents element-wise multiplication. The relation
vector is then fed into a single feedforward layer
of size 512 followed by a softmax output layer that
is used to perform the 3-way NLI classification.

Translation Ranking. Our translation task
setup is identical to the one used by Guo et al.
(2018) for bi-text retrieval. We minimize the neg-
ative log-likelihood of P̃ (si | ti), where (si, ti)
is a source-target translation pair. Since the trans-
lation task is intended to align the sentence rep-
resentations of the source and target languages,
we do not use any kind of task-specific feedfor-
ward layers and instead use g as both gI and gR.
Following Guo et al. (2018), we append 5 incor-
rect translations that are semantically similar to
the correct translation for each training example
as “hard-negatives”. Similarity is determined via
a version of our model trained only on the transla-
tion ranking task. We did not see additional gains
from using more than 5 hard-negatives.

3 Experiments

3.1 Corpora

Training data is composed of Reddit, Wikipedia,
Stanford Natural Language Inference (SNLI), and
web mined translation pairs. For each of our
datasets, we use 90% of the data for training, and
the remaining 10% for development/validation.

3.2 Model Configuration

In all of our experiments, multi-task training is
performed by cycling through the different tasks
(translation pairs, Reddit, Wikipedia, NLI) and
performing an optimization step for a single task
at a time. We train all of our models with a batch
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Model MR CR SUBJ MPQA TREC SST STS Bench
(dev / test)

Cross-lingual Multi-task Models
en-fr 77.9 82.9 95.5 89.3 95.3 84.0 0.803 / 0.763
en-es 80.1 85.9 94.6 86.5 96.2 85.2 0.809 / 0.770
en-de 78.8 84.0 95.9 87.6 96.1 85.0 0.802 / 0.764
en-zh 76.1 83.4 93.0 86.4 97.7 81.4 0.791 / 0.770

Translation-ranking Models
en-fr 68.7 79.3 87.0 81.8 89.4 74.2 0.668 / 0.558
en-es 67.7 75.7 83.5 86.0 94.4 72.6 0.669 / 0.631
en-de 67.8 75.2 84.4 83.6 86.8 74.6 0.673 / 0.632
en-zh 73.6 78.5 88.1 88.2 96.1 77.1 0.779 / 0.761

Prior Work
CPC (van den Oord et al., 2018) 76.9 80.1 91.2 87.7 96.8 – –

USE Trans. (Cer et al., 2018) 81.4 87.4 93.9 87.0 92.5 85.4 0.814 / 0.782
QT (Logeswaran and Lee, 2018) 82.4 86.0 94.8 90.2 92.4 87.6 –
InferSent (Conneau et al., 2017) 81.1 86.3 92.4 90.2 88.2 84.6 0.801 / 0.758

ST LN (Kiros et al., 2015) 79.4 83.1 93.7 89.3 – – –

Table 1: Performance on classification transfer tasks from SentEval (Conneau and Kiela, 2018).

size of 100 using stochastic gradient descent with
a learning rate of 0.008. All of our models are
trained for 30 million steps. All input text is tree-
bank style tokenized prior to being used for train-
ing. We build a vocab containing 200 thousand
unigram tokens with 10 thousand hash buckets for
out-of-vocabulary tokens. The character n-gram
vocab contains 200 thousand hash buckets used
for 3 and 4 grams. Both the word and character
n-gram embedding sizes are 320. All hyperparam-
eters are tuned based on the development portion
(random 10% slice) of our training sets. As an
additional training heuristic, we multiply the gra-
dient updates to the word and character embed-
dings by a factor of 100.6 We found that using
this embedding gradient multiplier alleviates van-
ishing gradients and greatly improves training.

We compare the proposed cross-lingual multi-
task models, subsequently referred to simply as
“multi-task", with baseline models that are trained
using only the translation ranking task, referred to
as “translation-ranking” models.

3.3 Model Performance on English
Downstream Tasks

We first evaluate all of our cross-lingual models
on several downstream English tasks taken from
SentEval (Conneau and Kiela, 2018) to verify the
impact of cross-lingual training. Evaluations are
performed by training single hidden-layer feedfor-
ward networks on top of the 512-dimensional em-

6We tried different orders of magnitude for the multiplier
and found 100 to work the best.

beddings taken from the frozen models. Results
on the tasks are summarized in Table 1. We note
that cross-lingual training does not hinder the ef-
fectiveness of our encoder on English tasks, as the
multi-task models are close to state-of-the-art in
each of the downstream tasks. For the Text RE-
trieval Conference (TREC) eval, we actually find
that our multi-task models outperform the previ-
ous state-of-the-art by a sizable amount.

We observe the en-zh translation-ranking mod-
els perform significantly better on the downstream
tasks than the European language pair translation-
ranking models. The en-zh models are possibly
less capable of exploiting grammatical and other
superficial similarities and are forced to rely on se-
mantic representations. Exploring this further may
present a promising direction for future research.

3.4 Cross-lingual Retrieval
We evaluate both the multi-task and translation-
ranking models’ efficacy in performing cross-
lingual retrieval by using held-out translation pair
data. Following Guo et al. (2018) and Hender-
son et al. (2017), we use precision at N (P@N)
as our evaluation metric. Performance is scored
by checking if a source sentence’s target transla-
tion ranks7 in the top N scored candidates when
considering K other randomly selected target sen-
tences. We set K to 999. Similar to Guo et al.
(2018), we observe using a small value of K, such
as K = 99 from Henderson et al. (2017), results

7Translation ranking scores are obtained by the dot prod-
uct of source and target representations
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Model STS Benchmark (dev / test)
en fr es de zh

Multi-task en-fr 0.803 / 0.763 0.777 / 0.738 – – –
Trans.-ranking en-fr 0.668 / 0.558 0.641 / 0.579 – – –

Multi-task en-es 0.809 / 0.770 – 0.779 / 0.744 – –
Trans.-ranking en-es 0.669 / 0.631 – 0.622 / 0.611 – –

Multi-task en-de 0.802 / 0.764 – – 0.768 / 0.722 –
Trans.-ranking en-de 0.673 / 0.632 – – 0.630 / 0.526 –

Multi-task en-zh 0.791 / 0.770 – – – 0.730 / 0.705
Trans.-ranking en-zh 0.779 / 0.761 – – – 0.733 / 0.701

Table 2: Pearson’s correlation coefficients on STS Benchmark (dev / test). The first column shows the
results on the original STS Benchmark data in English. French, Spanish

in all metrics quickly obtaining > 99% P@1.8

The translation-ranking model is a strong base-
line for identifying correct translations, with
95.4%, 87.5%, 97.5%, and 99.7% P@1 for en-
fr, en-es, en-de, and en-zh retrieval tasks, re-
spectively. The multi-task model performs al-
most identical with 95.1%, 88.8%, 97.8%, and
99.7% P@1, which provides empirical justifica-
tion that it is possible to maintain cross-lingual
embedding space alignment despite training on
additional monolingual tasks for each individual
language.9 Both model types surprisingly achieve
particularly strong ranking performance on en-zh.
Similar to the task transfer experiments, this may
be due to the en-zh models having an implicit in-
ductive bias to rely more heavily on semantics
rather than more superficial aspects of sentence
pair similarity.

3.5 Multilingual STS
Cross-lingual representations are evaluated on se-
mantic textual similarity (STS) in French, Span-
ish, German, and Chinese. To evaluate Spanish-
Spanish (es-es) STS, we use data from track 3
of the SemEval-2017 STS shared task (Cer et al.,
2017), containing 250 Spanish sentence pairs. We
evaluate English-Spanish (en-es) STS using STS
2017 track 4(a),10 which contains 250 English-
Spanish sentence pairs.

8999 is smaller than the 10+ million used by Guo et al.
(2018), but it allows for good discrimination between models
without requiring a heavier and slower evaluation framework

9We also experimented with P@3 and P@10, the results
are identical.

10The en-es task is split into track 4(a) and track 4(b). We
only use track 4(a) here. Track 4(b) contains sentence pairs
from WMT with only one annotator for each pair. Previ-
ously reported numbers are particularly low for track 4(b),
which may suggest either distributional or annotation differ-
ences between this track and other STS datasets.

Beyond English and Spanish, however, there are
no standard STS datasets available for the other
languages explored in this work. As such, we
perform an additional evaluation on a translated
version of the STS Benchmark (Cer et al., 2017)
for French, Spanish, German, and Chinese. We
use Google’s translation system to translate the
STS Benchmark sentences into each of these lan-
guages. We believe the results on the translated
STS Benchmark evaluation sets are a reasonable
indicator of multilingual semantic similarly per-
formance, particularly since the NMT encoder-
decoder architecture for translation differs signifi-
cantly from our dual-encoder approach.

Following Cer et al. (2018), we first compute
the sentence embeddings u, v for an STS sentence
pair, and then score the sentence pair similarity
based on the angular distance between the two
embedding vectors, − arccos

(
uv

||u|| ||v||

)
. Table 2

shows Pearson’s r on the STS Benchmark for all
models. The first column shows the trained model
performance on the original English STS Bench-
mark. Columns 2 to 5 provide the performance on
the remaining languages. Multi-task models per-
form better than the translation ranking models on
our multilingual STS Benchmark evaluation sets.
Table 3 provides the results from the en-es models
on the SemEval-2017 STS *-es tracks. The multi-
task models achieve 0.827 Pearson’s r for the es-es
task and 0.769 for the en-es task. As a point of ref-
erence, we also list the two best performing STS
systems, ECNU (Tian et al., 2017) and BIT (Wu
et al., 2017), as reported in Cer et al. (2017). Our
results are very close to these state-of-the-art fea-
ture engineered and mixed systems.
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Model STS (SemEval 2017)
es-es en-es

Multi-task 0.827 0.769
Trans.-ranking 0.642 0.587

ECNU 0.856 0.813
BIT 0.846 0.749

Table 3: Pearson’s r on track 3 (es-es) and track
4(a) (en-es) of the SemEval-2017 STS shared task.

4 Zero-shot Classification

To evaluate the cross-lingual transfer learning ca-
pabilities of our models, we examine performance
of the multi-task and translation-ranking encoders
on zero-shot and few-shot classification tasks.

4.1 Multilingual NLI

We evaluate the zero-shot classification perfor-
mance of our multi-task models on two multilin-
gual natural language inference (NLI) tasks. How-
ever, prior to doing so, we first train a modified
version11 of our multi-task models that also in-
cludes training on the English Multi-genre NLI
(MultiNLI) dataset of Williams et al. (2018) in ad-
dition to SNLI. We train with MultiNLI to be con-
sistent with the baselines from prior work.

We make use of the professionally translated
French and Spanish SNLI subset created by Agić
and Schluter (2018) for an initial cross-lingual
zero-shot evaluation of French and Spanish. We
refer to these translated subsets as SNLI-X. There
are 1,000 examples in the subset for each lan-
guage. To evaluate, we feed the French and Span-
ish examples into the pre-trained English NLI sub-
network of our multi-task models.

We additionally make use of the XNLI dataset
of Conneau et al. (2018), which provides multi-
lingual NLI evaluations for Spanish, French, Ger-
man, Chinese and more. There are 5,000 examples
in each XNLI test set, and zero-shot evaluation is
once again done by feeding non-English examples
into the pre-trained English NLI sub-network.

Table 4 lists the accuracy on the English SNLI
test set as well as on SNLI-X and XNLI for all of
our multi-task models. The original English SNLI
accuracies are around 84% for all of our multi-task
models, indicating that English SNLI performance
remains stable in the multi-task training setting.

11Training with additional MultiNLI data did not signifi-
cantly impact SNLI or downstream task performance.

The zero-shot accuracy on SNLI-X is around 74%
for both the en-fr and en-es models. The zero-shot
accuracy on XNLI is around 65% for en-es, en-fr,
and en-de, and around 63% for en-zh, thereby sig-
nificantly outperforming the pretrained sentence
encoding baselines (X-CBOW) described in Con-
neau et al. (2018). The X-CBOW baselines use
fixed sentence encoders that are the result of aver-
aging tuned multilingual word embeddings.

Row 4 of Table 4 shows the zero-shot French
NLI performance of Eriguchi et al. (2018), which
is a state-of-the-art zero-shot NLI classifier based
on multilingual NMT embeddings. Our multi-
task model shows comparable performance to the
NMT-based model in both English and French.

4.2 Amazon Reviews

Zero-shot Learning. We also conduct a zero-shot
evaluation based on the Amazon review data ex-
tracted by Prettenhofer and Stein (2010). Follow-
ing Prettenhofer and Stein (2010), we preprocess
the Amazon reviews and convert the data into a bi-
nary sentiment classification task by considering
reviews with strictly more than three stars as posi-
tive and less than three stars as negative. Reviews
contain a summary field and a text field, which we
concatenate to produce a single input. Since our
models are trained with sentence lengths clipped
to 64, we only take the first 64 tokens from the
concatenated text as the input. There are 6,000
training reviews in English, which we split into
90% for training and 10% for development.

We first encode inputs using the pre-trained
multi-task and translation-ranking encoders and
feed the encoded vectors into a 2-layer feed-
forward network culminating in a softmax layer.
We use hidden layers of size 512 with tanh ac-
tivation functions. We use Adam for optimiza-
tion with an initial learning rate of 0.0005 and a
learning rate decay of 0.9 at every epoch during
training. We use a batch size of 16 and train for
20 total epochs in all experiments. We freeze the
cross-lingual encoder during training. The model
architecture and parameters are tuned on the de-
velopment set.

We first train the classifier on English data, and
then evaluate it on the 6,000 French and Ger-
man Amazon review test examples. The results
are summarized in Table 5. On the English test
set, accuracy of the en-fr model is 87.4% with
the en-de model achieving 87.1%. Both mod-
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Model SNLI-X XNLI
en fr es en fr es de zh

Multi-task en-fr 84.2 74.0 – 71.6 64.4 – – –
Multi-task en-es 83.9 – 75.9 70.2 – 65.2 – –
Multi-task en-de 84.1 – – 71.5 – – 65.0 –
Multi-task en-zh 83.7 – – 69.2 – – – 62.8

NMT en-fr (Eriguchi et al., 2018) 84.4 73.9 – – – – –
XNLI-CBOW zero-shot (Conneau et al., 2018) – – – 64.5 60.3 60.7 61.0 58.8

Non zero-shot baselines
XNLI-BiLSTM-last (Conneau et al., 2018) – – – 71.0 65.2 67.8 66.6 63.7
XNLI-BiLSTM-max (Conneau et al., 2018) – – – 73.7 67.7 68.7 67.7 65.8

Table 4: Zero-shot classification accuracy (%) on SNLI-X and XNLI datasets. Cross-lingual transfer
models are training on English only NLI data and then evaluated on French (fr), Spanish (es), German
(de) and Chinese (zh) evaluation sets.

Model en fr de
Multi-task en-fr 87.4 82.3 –

Translation-ranking en-fr 74.4 66.3 –
Multi-task en-de 87.1 – 81.0

Translation-ranking en-de 73.8 – 67.0
Eriguchi et al. (2018) (NMT en-fr) 83.2 81.3 –

Table 5: Zero-shot sentiment classification accu-
racy(%) on non-English Amazon review test data
after training on English only Amazon reviews.

els achieve zero-shot accuracy on their respec-
tive non-English datasets that is above 80%. The
translation-ranking models again perform worse
on all metrics. Once again we compare the pro-
posed model with Eriguchi et al. (2018), and find
that our zero-shot performance has a reasonable
gain on the French test set.12

Few-shot Learning. We further evaluate the
proposed multi-task models via few-shot learning,
by training on English reviews and only a por-
tion of French and German reviews. Our few-
shot models are compared with baselines trained
on French and German reviews only. Table 6 pro-
vides the classification accuracy of the few-shot
models, where the second row indicates the per-
cent of French and German data that is used when
training each model. With as little as 20% of the
French or German training data, the few-shot mod-
els perform nearly as well compare to the base-
line models trained on 100% of the French and
German data. Adding more French and German
training data leads to further improvements in few-

12Eriguchi et al. (2018) also train a shallow classifier, but
use only review text and truncate their inputs to 200 tokens.
Our setup is slightly different, as our models can take a max-
imum of only 64 tokens.

shot model performance, with the few-shot mod-
els reaching 85.8% accuracy in French and 84.5%
accuracy in German, when using all of the French
and German data. The French model notably per-
forms +0.9% better when being trained on a com-
bination of the English and French reviews rather
than on the French reviews alone.

5 Analysis of Cross-lingual Embedding
Spaces

Motivated by the recent work of Søgaard et al.
(2018) studying the graph structure of multilingual
word representations, we perform a similar anal-
ysis for our learned cross-lingual sentence repre-
sentations. We take N samples of size K from
the language pair translation data and then encode
these samples using the corresponding multi-task
and translation-ranking models. We then compute
pairwise distance matrices within each sampled
set of encodings, and use these distance matrices
to construct graph Laplacians.13 We obtain the
similarity Ψ(S, T ) between each model’s source
and target language embedding by comparing the
eigenvalues of the source language graph Lapla-
cians to the eigenvalues of the target language
graph Laplacians:

Ψ(S, T ) =
1

N

N∑

i=1

K∑

j=1

(λj(L
(s)
i )−λj(L

(t)
i ))2 (3)

Where L
(s)
i and L

(t)
i refer to the graph Lapla-

cians of the source language and target lan-
guage sentences obtained from the ith sample of

13See Zhang (2011) for an overview of graph Laplacians.
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Target Model % available fr/de data
Language 0% 10% 20% 40% 80% 100%

French
Few-shot 100% en + X% fr 82.3 84.4 84.4 84.8 85.2 85.8
Monolingual 0% en + X% fr – 79.2 80.0 82.7 84.3 84.9

German
Few-shot 100% en + X% de 81.0 81.6 83.3 84.0 84.7 84.5
Monolingual 0% en + X% de – 75.5 77.7 81.6 83.5 84.4

Table 6: Sentiment classification accuracy(%) on target language Amazon review test data after training
on English Amazon review data and a portion of French of German data. The second row shows the
percent of French (fr) or German (de) data is used for training in each model.

source-target translation pairs. A smaller value of
Ψ(S, T ) indicates higher eigen-similarity between
the source language and target language embed-
ding subsets. Following Søgaard et al. (2018) we
use a sample size of K = 10 translation pairs,
but we choose to draw N = 1, 000 samples in-
stead of N = 10, as was done in Søgaard et al.
(2018). We found Ψ(S, T ) has very high variance
at N = 10. The computed values of Ψ(S, T ) for
our multi-task and translation-ranking models are
summarized in Table 7.

We find that the source and target embedding
subsets constructed from the multi-task models
exhibit greater average eigen-similarity than those
resulting from the translation-ranking models for
the European source-target language pairs, and ob-
serve the opposite for the English-Chinese models
(en-zh). As a curious discrepancy, we believe fur-
ther experiments looking at eigen-similarity across
languages could yield interesting results and lan-
guage groupings.

Eigen-similarity trends with better performance
for the European language pair multi-task mod-
els on the cross-lingual transfer tasks. A poten-
tial direction for future work could be to introduce
regularization penalties based on graph similarity
during multi-task training. Interestingly, we also
observe that the eigen-similarity gaps between the
multi-task and translation-ranking models are not
uniform across language pairs. Thus, another di-
rection could be to further study differences in the
difficulty of aligning different source-target lan-
guage embeddings.

5.1 Discussion on Input Representations

Our early explorations using a combination of
character n-gram embeddings and word em-
beddings vs. word embeddings alone as the
model input representation suggest using word-
embeddings only performs just slightly worse (one

Model en-fr en-es en-de en-zh
multi-task 0.592 0.526 0.761 2.366

trans.-ranking 1.036 0.572 2.187 0.393

Table 7: Average eigen-similarity values of source
and target embedding subsets.

to two absolute percentage points) on the dev sets
for the training tasks. The notable exception is
the word-embedding only English-German mod-
els tend to perform much worse on the dev sets
for the training tasks involving German. This is
likely due to the prevalence of compound words
in German and represents an interesting difference
for future exploration.

We subsequently explored training versions of
our cross-lingual models using a SentencePiece
vocabulary (Kudo and Richardson, 2018), a set
of largely sub-word tokens (characters and word
chunks) that provide good coverage of an input
dataset. Multilingual models for a single language
pair (e.g., en-de) trained with SentencePiece per-
formed similarly on the training dev sets to the
models using character n-grams. However, when
more languages are included in a single model
(e.g., a single model that covers en, fr, de, es, and
zh), SentencePiece tends to perform worse than
using a combination of word and character n-gram
embeddings. Within a larger joint model, Senten-
cePiece is particularly problematic for languages
like zh, which end up getting largely tokenized
into individual characters.

6 Conclusion

Cross-lingual multi-task dual-encoder models are
found to learn representations that achieve strong
within language and cross-lingual transfer learn-
ing performance. By training English-French,
English-Spanish, English-German, and English-
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Chinese multi-task models, we achieve near-state-
of-the-art or state-of-the-art performance on a va-
riety of English tasks, while also being able to
produce similar caliber results in zero-shot cross-
lingual transfer learning tasks. Further, cross-
lingual multi-task training is shown to improve
performance on some downstream English tasks
(TREC). We believe that there are many possibili-
ties for future explorations of cross-lingual model
training and that such models will be foundational
as language processing systems are tasked with in-
creasing amounts of multilingual data.
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Abstract

We propose a novel method, Modality-based
Redundancy Reduction Fusion (MRRF), for
understanding and modulating the relative con-
tribution of each modality in multimodal infer-
ence tasks. This is achieved by obtaining an
(M + 1)-way tensor to consider the high-order
relationships between M modalities and the
output layer of a neural network model. Ap-
plying a modality-based tensor factorization
method, which adopts different factors for dif-
ferent modalities, results in removing informa-
tion present in a modality that can be com-
pensated by other modalities, with respect to
model outputs. This helps to understand the
relative utility of information in each modality.
In addition it leads to a less complicated model
with less parameters and therefore could be
applied as a regularizer avoiding overfitting.
We have applied this method to three different
multimodal datasets in sentiment analysis, per-
sonality trait recognition, and emotion recog-
nition. We are able to recognize relationships
and relative importance of different modali-
ties in these tasks and achieves a 1% to 4%
improvement on several evaluation measures
compared to the state-of-the-art for all three
tasks.

1 Introduction

Multimodal data fusion is a desirable method for
many machine learning tasks where information is
available from multiple source modalities, typically
achieving better predictions through integration of
information from different modalities. Multimodal
integration can handle missing data from one or
more modalities. Since some modalities can in-
clude noise, it can also lead to more robust predic-
tion. Moreover, since some information may not be
visible in some modalities or a single modality may
not be powerful enough for a specific task, con-
sidering multiple modalities often improves perfor-

mance (Potamianos et al., 2003; Soleymani et al.,
2012; Kampman et al., 2018).

For example, humans assign personality traits
to each other, as well as to virtual characters by
inferring personality from diverse cues, both be-
havioral and verbal, suggesting that a model to
predict personality should take into account multi-
ple modalities such as language, speech, and visual
cues.

Our method, Modality-based Redundancy Re-
duction multimodal Fusion (MRRF), builds on re-
cent work in mutimodal fusion utilizing first an
outer product tensor of input modalities to better
capture inter-modality dependencies (Zadeh et al.,
2017) and a recent approach to reduce the num-
ber of elements in the resulting tensor through low
rank factorization (Liu et al., 2018). Whereas the
factorization used in (Liu et al., 2018) utilizes a
single compression rate across all modalities, we
instead use Tuckers tensor decomposition (see the
Methodology section), which allows different com-
pression rates for each modality. This allows the
model to adapt to variations in the amount of useful
information between modalities. Modality-specific
factors are chosen by maximizing performance on
a validation set.

Applying a modality-based factorization method
results in removing redundant information dupli-
cated across modalities and leading to fewer pa-
rameters with minimal information loss. Through
maximizing performance on a validation set, our
method can work as a regularizer, leading to a less
complicated model and reducing overfitting. In ad-
dition, our modality-based factorization approach
helps to understand the differences in useful infor-
mation between modalities for the task at hand.

We evaluate the performance of our approach us-
ing sentiment analysis, personality detection, and
emotion recognition from audio, text and video
frames. The method reduces the number of pa-
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rameters which requires fewer training samples,
providing efficient training for the smaller datasets,
and accelerating both training and prediction. Our
experimental results demonstrate that the proposed
approach can make notable improvements, in terms
of accuracy, mean average error (MAE), correla-
tion, and F1 score, especially for the applications
with more complicated inter-modality relations.

We further study the effect of different com-
pression rates for different modalities. Our results
on the importance of each modality for each task
supports the previous results on the usefulness of
each modality for personality recognition, emotion
recognition and sentiment analysis.

In the sequel, we first describe related work. We
elaborate on the details of our proposed method
in Methodology section. In the following section
we go on to describe our experimental setup. In
the Results section, we compare the performance
of MRRF and state-of-the-art baselines on three
different datasets and discuss the effect of compres-
sion rate on each modality. Finally, we provide a
brief conclusion of the approach and the results.
Supplementary materials describe the methodology
in greater detail.

Notation The operator ⊗ is the outer product op-
erator where z1 ⊗ . . . ⊗ zM for zi ∈ Rdi leads
to a M-way tensor in Rd1×...×dM . The opera-
tor ×k, for a given k, is k-mode product of a
tensor R ∈ Rr1×r2×...×rM and a matrix W ∈
Rdk×rk as W ×k R, which results in a tensor
R̄ ∈ Rr1×...×rk−1×dk×rk+1×...×rM .

2 Related Work

Multimodal Fusion: Multimodal fusion (Ngiam
et al., 2011) has a very broad range of applica-
tions, including audio-visual speech recognition
(Potamianos et al., 2003), classification of images
and their captions (Srivastava and Salakhutdinov,
2012), multimodal emotion recognition (Soleymani
et al., 2012), medical image analysis (James and
Dasarathy, 2014), multimedia event detection (Lan
et al., 2014), personality trait detection (Kampman
et al., 2018), and sentiment analysis (Zadeh et al.,
2017).

According to the recent work by (Baltrušaitis
et al., 2018), the techniques for multimodal fu-
sion can be divided into early, late and hybrid
approaches. Early approaches combine the mul-
timodal features immediately by simply concate-
nating them (D’mello and Kory, 2015). Late fusion

combines the decision for each modality (either
classification, or regression), by voting (Morvant
et al., 2014), averaging (Shutova et al., 2016) or
weighted sum of the outputs of the learned models
(Glodek et al., 2011; Shutova et al., 2016). The
hybrid approach combines the prediction by early
fusion and unimodal predictions.

It has been observed that early fusion (feature
level fusion) concentrates on the inter-modality
information rather than intra-modality informa-
tion (Zadeh et al., 2017) due to the fact that inter-
modality information can be more complicated at
the feature level and dominates the learning process.
On the other hand, these fusion approaches are not
powerful enough to extract the inter-modality inte-
gration model and they are limited to some simple
combining methods (Zadeh et al., 2017).

Zadeh et al. (2017) proposed combining n
modalities by computing an n-way tensor as a
tensor product of the n different modality repre-
sentations followed by a flattening operation, in
order to include 1-st order to n-th order inter modal-
ity relations. This is then fed to a neural network
model to make predictions. The authors show that
their proposed method improves the accuracy by
considering both inter-modality and intra-modality
relations. However, the generated representation
has a very large dimension which leads to a very
large hidden layer and therefore a huge number of
parameters.

The authors of (Poria et al., 2017a,b; Zadeh et al.,
2018a,b) introduce attention mechanisms utilizing
the contextual information available from the ut-
terances for each speaker. They require additional
information like the identity of the speaker, the
sequence of the utterance-sentiments while inte-
grating the multimodal data. Since these methods,
despite our proposed method, need additional in-
formation might not be available in the general
scenario, we do not include them in our experi-
ments.

Low Rank Factorization: Recently (Liu et al.,
2018) proposed a factorization approach in or-
der to achieve a factorized version of the weight
matrix which leads to fewer parameters while
maintaining model accuracy. They use a CAN-
DECOMP/PARAFAC decomposition (Carroll and
Chang, 1970; Harshman, 1970) which follows Eq.
1 in order to decompose a tensor W ∈ Rd1×...dM
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to several 1-dimensional vectors wi
m ∈ Rdk :

W =
r∑

i=1

λiw
i
1 ⊗ wi

2 ⊗ . . .⊗ wi
M

=
r∑

i=1

λi ⊗M
m=1 w

i
m

(1)

where⊗ is the outer product operator, λis are scalar
weights to combine rank 1 decompositions. This
approach used the same compression rate for all
modalities, i.e. r is shared for all the modalities,
and is not able to allow for varying compression
rates between modalities. Previous studies have
found that some modalities are more informative
than others (De Silva et al., 1997; Kampman et al.,
2018), suggesting that allowing different compres-
sion rates for different modalities should improve
performance.

3 Methodology

3.1 Tucker Factorization for Multimodal
Learning

Modality-based Redundancy Reduc- tion Fu-
sion (MRRF): We have used Tucker’s tensor
decomposition method (Tucker, 1966; Hitchcock,
1927) which decomposes an M -way tensor W ∈
Rd1×d2×...×dM to a core tensorR ∈ Rr1×r2×...×rM

and M matrices Wi ∈ Rri×di , with ri ≤ di, as it
can be seen in Eq. 2.

W = R×1 W1 ×2 W2 ×3 . . .×M WM ,

W ∈ Rd1×d2×...×dM

R ∈ Rr1×r2×...×rM ,

Wi ∈ Rdi×ri

(2)

The operator ×k is a k-mode product of a tensor
R ∈ Rr1×r2×...×rM and a matrix W ∈ Rdk×rk

as R ×k Wk, which results in a tensor R̄ ∈
Rr1×...×rk−1×dk×rk+1×...×rM .

For M modalities with representations D1, D2,
. . . and DM of size d1, d2, . . . and dM , an M -
modal tensor fusion approach as proposed by the
authors of (Zadeh et al., 2017) leads to a tensor
D = D1 ⊗ D2 ⊗ . . . ⊗ Dm ∈ Rd1×d2×...×dM .
The authors proposed flattening the tensor layer
in the deep network which results in loss of the
information included in the tensor structure. In this
paper, we propose to avoid the flattening and follow
Eq. 3 with weight tensor W ∈ Rh×d1×d2×...×dM ,
where leads to an output layer H of size h.

H = WD (3)

The above equation suffers from a large num-
ber of parameters (O(

∏
i=1 dih)) which requires

a large number of the training samples, huge time
and space, and easily overfits. In order to reduce the
number of parameters, we propose to use Tucker’s
tensor decomposition (Tucker, 1966; Hitchcock,
1927) as shown in Eq. 4, which works as a low-
rank regularizer (Fazel, 2002).

W = R×1 W1 ×2 W2 ×3 . . .×M+1 WM+1,

W ∈ Rh×d1×d2×...×dM ,

R ∈ Rr1×r2×r3×...×rM ,

Wi ∈ Rri×di , i = {1, . . . ,M},
WM+1 ∈ RrM+1×h

(4)
The non-diagonal core tensor R maintain inter-

modality information after compression, despite
the factorization proposed by (Liu et al., 2018)
which loses part of inter-modality information.

3.2 Proposed MRRF framework
We propose Modality-based Redundancy Reduc-
tion Fusion (MRRF), a tensor fusion and factoriza-
tion method allowing for modality specific com-
pression rates, combining the power of tensor fu-
sion methods with a reduced parameter complexity.
Without loss of generality, we will consider the
number of modalities to be 3 in this discussion.

Our method first forms an outer product tensor
from input modalities D, then projects this via a
tensor W to a feature vector H passed as input
to a neural network which performs the desired
inference task.

H = WD (5)

The trainable projection tensor W represents a
large number of parameters, and in order to reduce
this number, we propose to use Tucker’s tensor
decomposition (Tucker, 1966; Hitchcock, 1927),
which works as a low-rank regularizer (Fazel,
2002). This results in a decomposition of W into a
core tensor R of reduced dimensionality and three
modality specific matrices Wi.

W = R×1 W1 ×2 W2 ×3 W3 (6)

where ×k is a k-mode product of a tensor and a
matrix. Equation 5 can then be re-written

Z = W1 ×1 W2 ×2 W3 ×3 D

H = ZR (7)
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See Figure 1 for an overview of this process for
the case of three separate channels for audio, text,
and video. In practice we flatten tensors Z andR to
reduce this last operation to a matrix multiplication.
Further details of the decomposition strategy can
be found in the supplementary materials.

Note that a simple outer product of the input
features leads only to the high-order trimodal de-
pendencies. In order to also obtain the unimodal
and bimodal dependencies, the input feature vec-
tors for each modality are padded by 1. This also
provides a constant element whose corresponding
factors in W act as a bias vector.

Algorithm 1 shows the whole MRRF process.

Algorithm 1 Tensor Factorization Layer.
Input: n input modalities D1, D2, . . . , Dn of
size d1, d2, . . . , dn, correspondingly.
Initialization: factorization size for each modality
r1, r2, . . . , rn.

1: Compute tensor D = D1 ⊗D2 ⊗ . . .⊗Dn

2: Generate the layers for out = WD which
W = R̂ ×1 W1 ×2 . . . ×M WM in order to
transform the high-dimensional tensor D to
the output h.

3: Use Adam optimizer for the differentiable ten-
sor factorization layer to find the unknown pa-
rameters W1, W2, . . . , Wn, R̂.

Output: Factors for Weight Matrix W :
W1, W2, . . . , Wn, R.

The original tensor fusion approach as proposed
in (Zadeh et al., 2017) flattened the tensor D which
results in loss of the information included in the
tensor structure, which is avoided in our approach.
Liu et al. (2018) developed a similar approach to
ours using a diagonal core tensor R, losing much
inter-modality information. Our non-diagonal core
tensor maintains key inter-modality information
after compression.

Note that the factorization step is task dependent,
included in the deep network structure and learned
during network training. Thus, for follow-up learn-
ing tasks, we would learn a new factorization spe-
cific to the task at hand, typically also estimating
optimal compression ratios as described in the dis-
cussion section. In this process, any shared, helpful
information is retained, as demonstrated by our
results.

Analysis of parameter complexity: Following
our proposed approach, we have decomposed the
trainable W tensor to four substantially smaller
trainable matrices (W1, W2, W3, R) leading to
O(

∑M
i=1(di ∗ ri) +

∏M
i=1 ri ∗ h) parameters. Con-

cat fusion (CF) leads to a layer size of O(
∑M

i=1 di)

and O(
∑M

i=1 di ∗ h) parameters.
The tensor fusion approach (TF), leads to a layer

size of O(
∏M

i=1 di), and O(
∏M

i=1 di ∗ h) parame-
ters. The LMF approach (Liu et al., 2018) requires
training O(

∑M
i=1 r ∗ h ∗ di) parameters, where r is

the rank used for all the modalities.
It can be seen that the number of parameters

in the proposed approach is substantially fewer
than the simple tensor fusion (TF) approach and
comparable to the LMF approach.

4 Experimental Setup

4.1 Datasets
We perform our experiments on the following mul-
timodal datasets: CMU-MOSI (Zadeh et al., 2016),
POM (Park et al., 2014), and IEMOCAP (Busso
et al., 2008) for sentiment analysis, speaker traits
recognition, and emotion recognition, respectively.
These tasks can be done by integrating both verbal
and nonverbal behaviors of the persons.

The CMU-MOSI dataset is annotated on a seven-
step scale as highly negative, negative, weakly neg-
ative, neutral, weakly positive, positive, highly pos-
itive which can be considered as a 7 class classifi-
cation problem with 7 labels in the range [−3,+3].
The dataset is an annotated dataset of 2199 opin-
ion utterances from 93 distinct YouTube movie
reviews, each containing several opinion segments.
Segments average of 4.2 seconds in length.

The POM dataset is composed of 903 movie re-
view videos. Each video is annotated with the fol-
lowing speaker traits: confident, passionate, voice
pleasant, dominant, credible, vivid, expertise, enter-
taining, reserved, trusting, relaxed, outgoing, thor-
ough, nervous, persuasive and humorous.

The IEMOCAP dataset is a collection of 151
videos of recorded dialogues, with 2 speakers per
session for a total of 302 videos across the dataset.
Each segment is annotated for the presence of 9
emotions (angry, excited, fear, sad, surprised, frus-
trated, happy, disgust and neutral).

Each dataset consists of three modalities, namely
language, visual, and acoustic. The visual and
acoustic features are calculated by taking the av-
erage of their feature values over the word time
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Figure 1: Diagram of Modality-based Redundancy Reduction Multimodal Fusion (MRRF).

interval (Chen et al., 2017). In order to perform
time alignment across modalities, the three modali-
ties are aligned using P2FA (Yuan and Liberman,
2008) at the word level.

Pre-trained 300-dimensional Glove word embed-
dings (Chen et al., 2017) were used to extract the
language feature representations, which encodes a
sequence of the transcribed words into a sequence
of vectors.

Visual features for each frame (sampled at 30Hz)
are extracted using the library Facet1 which in-
cludes 20 facial action units, 68 facial landmarks,
head pose, gaze tracking and HOG features (Zhu
et al., 2006).

COVAREP acoustic analysis framework (Degot-
tex et al., 2014) is used to extract low-level acous-
tic features, including 12 Mel frequency cepstral
coefficients (MFCCs), pitch, voiced/unvoiced seg-
mentation, glottal source, peak slope, and maxima
dispersion quotient features.

To evaluate model generalization, all datasets are
split into training, validation, and test sets such that
the splits are speaker independent, i.e., no speakers
from the training set are present in the test sets.
Table 1 illustrates the data splits for all the datasets
in detail.

1goo.gl/1rh1JN

Dataset CMU-MOSI IEMOCAP POM
Level Segment Segment Video

Train 1284 6373 600
Valid 229 1775 100
Test 686 1807 203

Table 1: The speaker independent data splits for train-
ing, validation, and test sets

4.2 Model Architecture

Similarly to (Liu et al., 2018), we use a simple
model architecture for extracting the representa-
tions for each modality. We used three unimodal
sub-embedding networks to extract representations
za, zv and zl for each modality, respectively. For
acoustic and visual modalities, the sub-embedding
network is a simple 2-layer feed-forward neural
network, and for language, we used a long short-
term memory (LSTM) network (Hochreiter and
Schmidhuber, 1997).

We tuned the layer sizes, the learning rates and
the compression rates, by checking the mean av-
erage error for the validation set by grid search.
We trained our model using the Adam optimizer
(Kingma and Ba, 2014). All models were imple-
mented with Pytorch (Paszke et al., 2017).
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Dataset CMU-MOSI POM IEMOCAP
Metric MAE Corr Acc-2 F1 Acc-7 MAE Corr Acc F1-Happy F1-Sad F1-Angry F1-Neutral

CF 1.140 0.52 72.3 72.1 26.5 0.865 0.142 34.1 81.1 81.2 65.1 44.1
TFN 0.970 0.633 73.9 73.4 32.1 0.886 0.093 31.6 83.6 82.8 84.2 65.4
LMF 0.912 0.668 76.4 75.7 32.8 0.796 0.396 42.8 85.8 85.9 89.0 71.7

MRRF 0.912 0.772 77.46 76.73 33.02 0.69 0.44 43.02 87.71 85.9 90.02 73.7

Table 2: Results for Sentiment Analysis on CMU-MOSI, emotion recognition on IEMOCAP and personality trait
recognition on POM. (CF, TF, and LMF stand for concat, tensor and low-rank fusion respectively).

5 Experimental Results and Comparing
with State-of-the-art

We compared our proposed method with three base-
line methods. Concat fusion (CF) (Baltrušaitis
et al., 2018) proposes a simple concatenation of
the different modalities followed by a linear com-
bination. The tensor fusion approach (TF) (Zadeh
et al., 2017) computes a tensor including uni-modal,
bi-modal, and tri-modal combination information.
LMF (Liu et al., 2018) is a tensor fusion method
that performs tensor factorization using the same
rank for all the modalities in order to reduce the
number of parameters. Our proposed method aims
to use different factors for each modality.

In Table 2, we present mean average error
(MAE), the correlation between prediction and true
scores, binary accuracy (Acc-2), multi-class accu-
racy (Acc-7) and F1 measure. The proposed ap-
proach outperforms baseline approaches in nearly
all metrics, with marked improvements in Happy
and Neutral recognition. The reason is that the
inter-modality information for these emotions is
more complicated than the other emotions and re-
quires a non-diagonal core tensor to extract the
complicated information. It is worth to note that
for the equivalent setting and equal ranks for all
the modalities, the result of the proposed method
is always marginally better than LMF method.

5.1 Investigating the Effect of Compression
Rate on Each Modality

In this section, we aim to investigate the amount
of redundant information in each modality. To do
this, after obtaining a tensor which includes the
combinations of all modalities with the equivalent
size, we factorize a single dimension of the ten-
sor while keeping the size for the other modalities
fixed. By observing how the performance changes
by compression rate, one can find how much redun-
dant information is contained in the corresponding
modality relative to the other modalities.

The results can be seen in Fig. 2, 3 and 4. The
horizontal axis is the compressed size and the ver-

tical axis shows the accuracy for each modality.
Note that due to the padding of each Di with 1, we
have used ri + 1 as the new embedding size.

The first point that could be perceived clearly
from the different modality diagrams is that each
of the modalities changes in a different way when
getting compressed, which means they each have
a different amount of information that can not be
compensated by the non-compressed modalities.
In other words, a high accuracy when a modality
is highly compressed means that there is a lot of
redundant information in this modality — the in-
formation loss resulting from factorization could
be compensated by the other modalities so perfor-
mance was not reduced.

Fig. 2 shows results for the CMU-MOSI senti-
ment analysis dataset. For this dataset, a notable
decrease in accuracy can be seen by compressing
the video modality, while the audio and text modal-
ities are not notably sensitive to compression. This
shows that for sentiment analysis based on CMU-
MOSI dataset, the information in Video modality
cannot be compensated by other modalities, how-
ever most information in the audio and language
modalities is covered in video modality. In other
words, the video contains essential information for
this task whereas information from audio and lan-
guage can be recovered from video.

Fig. 3 shows the average accuracy over 16 per-
sonality types for the POM personality trait recog-
nition dataset. For this dataset also, each of the
modalities has a different behavior for different
compression rates. We can see that the audio
modality includes more non-redundant information
for personality recognition as accuracy is highly
affected by audio compression. In addition, there is
a notable accuracy reduction when the language
modality is highly compressed, which shows a
small amount of non-redundant information for
this task. Note that the POM data does not contain
sufficient information for an effective analysis of
the 16 personality sub types individually.

Fig. 4 shows the results for the IEMOCAP emo-
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Figure 2: CMU-MOSI sentiment analysis dataset: Ef-
fect of different compression rates on accuracy for sin-
gle modalities.
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Figure 3: POM personality recognition dataset: Effect
of different compression rates on accuracy for single
modalities.

tion recognition dataset for each of the four emo-
tional categories: happy, angry, sad, and neutral.
Looking at the sad category, we see notable accu-
racy reduction for small sizes (high compression)
for all the modalities, showing that each contains
at least some non-redundant information. How-
ever, high compression of audio and especially lan-
guage modalities results in strong accuracy reduc-
tion whereas video compression results in relatively
minor reduction. It can be concluded that for this
emotion, the language modality has the most non-
redundant information and the video modality very
little — it’s information can be compensated by
the other two modalities. Moving on to the angry
emotion, small sizes (high compression) result in
accuracy reduction for audio and language modali-
ties, showing that they contain some non-redundant

information, with the audio modality containing
more. Again the information in video can be al-
most completely compensated by the other two
modalities.

By comparing the highest accuracy values for
various emotion categories, it is observed that neu-
tral is hard to predict in comparison to the other cat-
egories. Again, the audio and Language modalities
both include non-redundant information leading to
a severe accuracy reduction with high compression
of these modalities, with video containing almost
no information not compensated by audio and lan-
guage.

The happy category is the easiest to predict emo-
tion, and it slightly suffers for very small sizes of
audio and video and language modalities, indicat-
ing a small amount of non-redundant information
in all modalities.

6 Conclusion

We proposed a tensor fusion method for multi-
modal media analysis by obtaining an M + 1-way
tensor to consider the high-order relationships be-
tween M input modalities and the output layer.
Our modality-based factorization method removes
the redundant information in this high-order de-
pendency structure and leads to fewer parameters
with minimal loss of information. In addition, a
modality-based factorization approach helps to un-
derstand the relative quantities of non-redundant
information in each modality through investigation
sensitivity to modality-specific compression rates.
As the proposed compression method leads to a
less complicated model, it can be applied as a regu-
larizer which avoiding overfitting.

We have provided experimental results for com-
bining acoustic, text, and visual modalities for three
different tasks: sentiment analysis, personality trait
recognition, and emotion recognition. We have
seen that the modality-based tensor compression
approach improves the results in comparison to
the simple concatenation method, the tensor fusion
method and tensor fusion using the same factoriza-
tion rank for all modalities, as proposed in the LMF
method. In other words, the proposed method en-
joys the same benefits as the tensor fusion method
and avoids suffering from having a large number of
parameters, which leads to a more complex model,
needs many training samples and is more prone
to overfitting. We have investigated the effect of
the compression rate on single modalities while
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Figure 4: IEMOCAP Emotion Recognition Dataset: Effect of different compression rates on accuracy for single
modalities.

fixing the other modalities helping to understand
the amount of useful non-redundant information in
each modality. Moreover, we have evaluated our
method by comparing the results with state-of-the-
art methods, achieving a 1% to 4% improvement
across multiple measures for the different tasks.

In future work, we will investigate the relation
between dataset size and compression rate by ap-
plying our method to larger datasets. This will help
to understand the trade-off between the model size
and available training data, allowing more efficient
training and avoiding under- and overfitting.

As the availability of data with more and more
modalities increases, both finding a trade-off be-
tween cost and performance and effective and effi-
cient utilization of available modalities will be vital.
Exploring compression methods promises to help
identify and remove highly redundant modalities.
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Abstract

While the application of word embedding
models to downstream Natural Language Pro-
cessing (NLP) tasks has been shown to be
successful, the benefits for low-resource lan-
guages is somewhat limited due to lack of ad-
equate data for training the models. How-
ever, NLP research efforts for low-resource
languages have focused on constantly seeking
ways to harness pre-trained models to improve
the performance of NLP systems built to pro-
cess these languages without the need to re-
invent the wheel. One such language is Welsh
and therefore, in this paper, we present the
results of our experiments on learning a sim-
ple multi-task neural network model for part-
of-speech and semantic tagging for Welsh us-
ing a pre-trained embedding model from Fast-
Text. Our model’s performance was compared
with those of the existing rule-based stand-
alone taggers for part-of-speech and semantic
taggers. Despite its simplicity and capacity to
perform both tasks simultaneously, our tagger
compared very well with the existing taggers.

1 Introduction

The Welsh language can easily be classified as low
resourced in the context of natural language pro-
cessing because the lack of the commonly used
resources in language research such as large an-
notated corpora as well as the standard computa-
tional tools and techniques for processing these re-
sources.

There is still a long way to go for Welsh,
but the situation is improving. For instance,
Welsh is fortunate to have a fund that supports an
on-going inter-disciplinary and multi-institutional
project, the National Corpus of Contemporary
Welsh (Corpws Cenedlaethol Cymraeg Cyfoes -
CorCenCC)1, which has been building a large-

1http://www.corcencc.org/

scale open-source language resource for contem-
porary Welsh language.

Existing Welsh part-of-speech (sections 2.1)
and semantic (section 2.2) taggers produce good
results, but their heavy dependence on hand-
crafted rules and hard-coded resources may pose
a maintenance challenge in future. Also, consid-
ering the speed with which languages evolve, es-
pecially on the internet, and the huge amount of
unannotated corpora that can be collected from the
web, we urgently need a system that is capable of
learning from unstructured text in order to guaran-
tee the generalisability and scalability of tagging
tools.

Given the potential challenges with the exist-
ing approaches and considering the similarities be-
tween the tasks of part-of-speech (POS) and se-
mantic (SEM) annotation, we propose to train a
single neural network model that can jointly learn
both of the tasks. We aim at requiring as little hu-
man annotation effort as possible and leveraging
the linguistic patterns acquired from unsupervised
language models like word embeddings. The main
contributions of this research includes: (1) The
first application of multi-task learning to POS and
semantic tagging for any language that we know
of, (2) The ability to improve OOV coverage
for the Welsh language using pre-trained embed-
dings for semantic category extension, (3) Pub-
lic release of two sets of manually checked gold-
standard corpora for POS and semantic tagging
of Welsh, (4) Inter-annotator agreement scores for
Welsh semantic tagging, (5) Public release of the
first Welsh semantic tagger (CySemTagger) (6)
The first demonstration of multi-task learning to
improve NLP task accuracy for Welsh, and (7)
A demonstration of the usefulness of multi-task
learning in a mono-lingual setting for a low re-
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source language.2

2 Background

POS tagging is a well studied NLP task. Much
recent work on this task has moved away from
English and European languages to other major
languages such as Arabic (Aldarmaki and Diab,
2015), Chinese (Sun and Wan, 2016), dialects
thereof (Darwish et al., 2018), and text types con-
taining more noise such as historical (Yang and
Eisenstein, 2016; Janssen et al., 2017), learner lan-
guage (Nagata et al., 2018), code switching (Vyas
et al., 2014) and social media varieties (Horsmann
and Zesch, 2016; van der Goot et al., 2017). More
recently, joint and multi-task learning approaches
have been applied to link POS tagging and other
tasks such as segmentation or tokenisation (Al-
Gahtani and McNaught, 2015; Shao et al., 2017),
dependency parsing (Nguyen and Verspoor, 2018)
and lemmatisation (Arakelyan et al., 2018).

Besides being applied to other NLP applications
and levels, multi-task learning has been applied
with promising results to the semantic level in var-
ious scenarios, including cross-lingual sentiment
analysis (Wang et al., 2018), opinion and seman-
tic role labelling (Marasović and Frank, 2018),
semantic parsing (Bordes et al., 2012), emotion
prediction (Buechel and Hahn, 2018), irony de-
tection (Wu et al., 2018) and rumour verification
(Kochkina et al., 2018). However, there is very
little research that applies multi-task learning to
link Word Sense Disambiguation (WSD) or se-
mantic tagging with another task. Here, we re-
fer to the semantic tagging as coarse-grained word
sense disambiguation based on an existing taxon-
omy of categories, e.g. in USAS (Rayson et al.,
2004). Previously, semantic tagging in multiple
languages has been shown to greatly benefit from
POS tagging in the NLP pipeline, since it can help
to filter out inapplicable semantic fields from the
set of possible candidates (Piao et al., 2015).

Over the past few years, researchers started to
port NLP tools and methods into low resource lan-
guages using a various approaches, such as porting
lexicons from one language to another using bilin-
gual dictionaries and parallel corpora (Piao et al.,
2016) and cross-lingual word embeddings (Adams
et al., 2017; Sharoff, 2018). Multi-task learning
has also been proved useful in transferring the

2Gold-standard corpora and tools are available on our
GitHub account: https://github.com/CorCenCC

learning across languages in a multilingual setting
where one of the languages has only sparse re-
sources available (Junczys-Dowmunt et al., 2018;
Lin et al., 2018; Choi et al., 2018), although less
successful in named entity recognition settings
(Enghoff et al., 2018). In our experiments, we fo-
cus on a low-resource mono-lingual setting with a
small manually corrected corpus, and combine the
Welsh POS and SEM annotation for the first time.

2.1 CyTag

The rule-based POS tagger under consideration in
our work, CyTag (Neale et al., 2018), was built
based on Constraint Grammar (CG) (Karlsson,
1990), in particular built around the latest version
of the software, VISL CG-33. The CyTag tagset4

contains 145 fine-grained POS tags that can col-
lapse into 13 EAGLES5-conformant broader cate-
gories.

CyTag utilises three steps to assign POS tags to
tokens:

• A list of candidate POS tags is produced for
each token.

• The list of candidate tags for each token is
pruned to as few as possible (ideally one) us-
ing CG-formatted rules.

• The optimal tag for each token is selected,
helped by some small additional processing
steps for any cases that were still ambiguous
after post-CG.

In the second step listed above, CyTag makes
use of a CG-formatted ‘grammar’ file – currently
containing 243 hand-crafted and hard-coded rules
– to ‘prune’ the list of candidate tags to one for
ambiguous tokens. The rules are formatted as fol-
lows:

action (reading) if (neighbour (features))
whereby action refers to the ‘operation’ to be

performed on the reading e.g. (‘selecting or ‘re-
moving’); neighbour is a nearby token of inter-
est to the target token on whose features the ac-
tion depends. CyTag was evaluated using a gold-
standard annotated corpus containing 611 sen-
tences (14,876 tokens), as will be described in sub-
section 3.1.

3http://visl.sdu.dk/cg3.html
4http://cytag.corcencc.org/tagset
5http://www.ilc.cnr.it/EAGLES/browse.

html
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Another recently-developed POS tagger for
Welsh is the WNLT-Tagger, which forms part of
the Welsh Natural Language Toolkit (WNLT)6.
WNLT-Tagger is one of the four main modules in
WNLT, which is itself built on the GATE (Gen-
eral Architecture for Text Engineering) framework
(Cunningham, 2002).

2.2 CySemTagger: The Welsh Semantic
tagger

CyTag is a precursor to CySemTagger (Piao et al.,
2018) which is an automatic semantic annota-
tion tool that depends on the POS tagged output
to assign semantic tags to tokens in Welsh texts.
CySemTagger employs the semantic tagset of
Lancaster University’s UCREL Semantic Analysis
System, USAS7. The semantic tagset, which was
originally derived from Tom McArthur’s Longman
Lexicon of Contemporary English (McArthur and
McArthur, 1981), has 21 major discourse fields
and 232 tags.

The CySemTagger is a knowledge-based and
rule-based system with the following key compo-
nents:

• lexicon look-up (both for single words and
MWEs)

• part-of-speech tagging (CyTag and WNLT-
Tagger)

• semantic category disambiguation

• output formatting and display

The CySemTagger tagger is designed to work
with any POS-tagger but its performance was as-
sessed so far only on the coverage of the Welsh
text presented to it, i.e. the fraction of the tokens
it is able to assign at least one of the valid seman-
tic tags. The experiment presented in (Piao et al.,
2018) indicates that, on the text coverage evalu-
ation, the CySemTagger works better with CyTag
than with WNLT-Tagger, as shown by the respec-
tive text coverage scores of 91.78% and 72.92%
with both POS taggers.

3 Experiments

The CyTag and the CySemTagger are separate
tools that use rule-based methods to achieve their

6https://sourceforge.net/projects/
wnlt/

7http://ucrel.lancaster.ac.uk/usas/

results. The semantic tagger relies heavily on a
part-of-speech tagger to function. The key aim of
this paper is to implement a tagging system that:

• learns from unstructured data,

• leverages available embedding models,

• performs both tasks, POS and semantic
tagging, simultaneously using a multi-task
learning set up.

3.1 Experimental data
As mentioned earlier in section 2.1, the instances
for training the POS and semantic taggers were ex-
tracted from the manually annotated gold standard
evaluation corpus that has been constructed in the
CorCenCC project, i.e. the data used for the Cy-
Tag and CySemTagger development. This train-
ing data comprises 611 tagged sentences (14,876
tokens) stored in eight input files that contain ex-
cerpts from a variety of existing Welsh corpora, in-
cluding Kynulliad314 (Welsh Assembly proceed-
ings), Meddalwedd15 (translations of software in-
structions), Kwici16 (Welsh Wikipedia articles),
LERBIML17 (multi-domain spoken corpora) and
some short abstracts of three additional Welsh
Wikipedia articles. The fully manually checked
version of the gold standard data, i.e. with the
POS and SEM tags, will be released along with the
multi-task model for parts-of-speech and semantic
tagging.

The dataset used for training the multi-task
model was built with the data instances extracted
from the fully tagged version of the gold standard
data. These data instances do not contain unam-
biguous tokens (e.g. punctuation and numbers)
and those categorised as unknown are removed
from the training data. The basic statistics from
the data used in our experiment are shown in Ta-
ble 1.

Although the data used in this experiment is
comparatively smaller than what is often used by
typical neural network projects, we assume it is
sufficient for an exploratory research that aims to
build a prototypical framework to support further
developments for the Welsh language tools.

3.2 Embedding model
A key contribution of this work to Welsh NLP
research is the application of pre-trained embed-
dings to build the model. Although most deep-
learning frameworks provide an embedding layer
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Key item Counts
sentences 611
tokens 14876
vocab length 3902
model vocab 3821
model vecsize 300
model oov 81
tagset size 392
punctuation 1667
unknown tags 44

Table 1: Basic statistics from the training data and em-
bedding model used in this experiment.

that allows one to create embeddings from the
training data, it is more beneficial to leverage ex-
isting models trained with much larger Welsh text
data than to only rely on what is currently avail-
able. To that effect, we used the Welsh pre-trained
embedding models built by the FastText Project8

(Grave et al., 2018).

3.3 Design of experiment
The key input data to our pipeline consists of the
611 sentences that are jointly annotated with the
POS and semantic tags. The combination of the
annotation tags on the gold standard data makes it
possible to extract the data in the different formats,
as shown in Table 3. However, the format used for
this experiment is the last one, 3-BOTH, in which
each token is tagged with a concatenation of the
POS and semantic tags.

The extraction of the instance features for each
token is carried out in two stage process which in-
volves the chunking of the target word along with
its three previous tokens (i.e. 4 words in total),
as well as the vectorisation of the features. The
chunking process proceeds with a sliding window
along the sentence, with the target word being the
rightmost in the chunk. The vectorisation then re-
places each word in the chunk with its vector rep-
resentation from a word-embedding model, form-
ing a matrix of values that represent each training
instance. The label for each instance is the tag-ID
i.e. a unique integer number assigned to each of
the tags.

3.4 Model architecture and training setup
The model we used is a simple neural network
with only one hidden layer. Each instance is a con-

8https://dl.fbaipublicfiles.com/
fasttext/vectors-crawl/cc.cy.300.vec.gz

Training Evaluation
Accuracy Loss Accuracy Loss

-Vector size
10 72.44 1.160 70.26 3.517
50 99.09 0.036 94.51 5.313
100 99.04 0.032 94.76 4.775
200 99.09 0.027 95.23 4.650
300 99.05 0.030 95.38 4.994
-Mini-batch size
8 99.08 0.032 95.29 4.450
16 99.10 0.030 95.55 4.552
32 99.04 0.034 95.03 4.758
64 99.13 0.030 94.97 4.905
-Dropout rates
10 99.11 0.033 95.38 3.807
20 98.60 0.051 94.80 3.873
30 97.68 0.083 94.27 3.434
40 95.92 0.137 92.85 3.362
50 93.08 0.232 90.32 3.280

Table 2: Parameter optimisation: Training and Evalua-
tion of scores on Accuracy and Loss. Parameter values
in bold were chosen.

Tagtype Example
0 - None A fydd rhywfaint o ’r arian hwn

yn cael ei ddefnyddio i sicrhau
bod modd defnyddio tocynnau
rhatach yn Lloegr yn ogystal ag
yng Nghymru ?

1 - POS A/Rha fydd/B rhywfaint/E o/Ar
’r/YFB arian/E hwn/Rha yn/U
cael/B ei/Rha ddefnyddio/B i/Ar
sicrhau/B ...

2 - SEM A/Z5 fydd/A3 rhywfaint/N5
o/Z5 ’r/Z5 arian/I1 hwn/A3
yn/Z5 cael/A9 ei/Z8 ddefnyd-
dio/A1 i/Z5 sicrhau/A7 ...

3 - BOTH A/Rha/Z5 fydd/B/A3 rhyw-
faint/E/N5 o/Ar/Z5 ’r/YFB/Z5
arian/E/I1 hwn/Rha/A3 yn/U/Z5
cael/B/A9 ei/Rha/Z8 ddefnyd-
dio/B/A1 i/Ar/Z5 sicrhau/B/A7
...

Table 3: Different annotation formats for the experi-
mental data. We used the 3-BOTH format which com-
bines the POS and semantic tags.
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catenation of the embedding vectors of the target
word and the three previous words. So the size of
the input layer is the same as the length of the con-
catenated vectors. The key parameters required for
the model training and evaluation are vector size,
mini-batch size and dropout rate, and different val-
ues of each parameter are tested over runs of 50
epochs for each as shown in Table 2.

The output layer is the size of the tagset ex-
tracted from the training data. From the annotation
format used, each token’s tag is a combination of
the POS and semantic tags and, as shown in Table
1, the total tagset size is 392. This is compara-
tively large but it will help facilitate the multi-task
learning, which this work aims to achieve.

The model architecture is shallow, as only one
hidden layer is used. Ideally, the size of the hid-
den layer should be somewhere between the sizes
of both the input and the output layers (Reed
and Marks, 1999). However, in order to reduce
the number of parameters in this model, the size
of 256 was arbitrarily chosen. For the hidden
layer, the Adam optimiser (Kingma and Ba, 2014)
was used with the rectified linear unit (ReLu)
activation function (Nair and Hinton, 2010) as
implemented in the integrated TensorFlow-Keras
(Abadi et al., 2016), (Chollet et al., 2015) frame-
work.

3.4.1 Vector size

Given the small size of the training data, and in
order not to have too many parameters that can
cause over-fitting, we tested the model with dif-
ferent vector sizes, (i.e. 10, 50, 100, 200, 300),
averaged across a range of other parameters val-
ues for the mini-batch and dropout. The training
and evaluation for parameter optimisation was per-
formed over 50 epochs.

With regards to the evaluation accuracy, as
shown in Figure 1, apart from nvecs = 10, all
other vector sizes could converge within the first
30 to 40 epochs. However, the evaluation loss be-
gins to rise within the first 10 epochs, with most
nvecs hitting nearly above 4.5 before reaching
the 50th epoch. To balance this, a vector size of
100 was used, i.e. only the first 100 values were
taken from each embedding vector to build the in-
put layer, as suggested in (Brownlee, 2017). This
produced an input layer size of 400.

3.4.2 Mini-batch size

The training set was chunked into mini-batches as
described in (Ruder, 2016), with 8 instances per
batch. The mini-batch values 8, 16, 32 and 64
were tested across other parameter values (see Fig-
ure 2). Their average performances indicate that,
while there is only a small change in evaluation ac-
curacies across the values, there is a slightly lower
loss value with a mini-batch of 8 than the others.

3.4.3 Dropout rate

Given the small quantity of the training data, the
architecture also implemented dropout regularisa-
tion (Srivastava et al., 2014) on the hidden layer
to reduce the expected likelihood of over-fitting.
Different dropout rates (10%, 20%, 30%, 40%
and 50%) were tested as shown in Figure 3, and
dropout rate of 30% was chosen to jointly miti-
gate the impact of on both the evaluation accuracy
and the loss.

3.4.4 Batch Normalisation

Batch normalisation addresses the problem of in-
ternal covariate shift (Ioffe and Szegedy, 2015) by
normalising the inputs to the model layers, thereby
increasing the training speed. In some cases, it
acts as a regulariser. Therefore, a version of the
model architecture described above implements
batch normalisation. This is because, during train-
ing, improvement rates in the model’s evaluation
accuracy slow down after the first 50 epochs while
the loss continues to escalate. Techniques that
speed up the learning were considered to investi-
gate the combined impact of speed and regularisa-
tion on evaluation accuracy and loss.

3.4.5 Loss Function

As a multi-class classification task, the stan-
dard loss function is the cross-entropy with the
softmax logistic activation function, as described
in equation 3.4.5 (Mannor et al., 2005).

− 1

N

N∑

i=1

T∑

t=1

log(p(y|Xi)t)1[yi = t] (1)

where N is the number of instances in the train-
ing batch, T is the number of unique tags while
Xi, and yi are a set of input values and the corre-
sponding label respectively.
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Figure 1: Accuracy vs Loss for different vector sizes

Figure 2: Accuracy vs Loss for different mini-batch sizes

Figure 3: Accuracy vs Loss for different dropout rates
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Training Evaluation
Accuracy Loss Accuracy Loss

-dropout,-batchnorm 99.23 0.021 95.24 6.161
-dropout,+batchnorm 95.51 0.144 92.57 3.837
+dropout,-batchnorm 98.36 0.050 94.89 4.880
+dropout,+batchnorm 88.88 0.350 86.66 2.682

Table 4: Result summary for training and evaluation of accuracy and loss with or without dropout
and batch normalisation

Figure 4: Evaluation graph for both accuracy and loss with and without dropout and/or batch
normalisation.

Figure 5: Training and evaluation graphs for accuracy and loss with and without dropout and/or
batch normalisation.
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4 Evaluation and discussion

With the accuracy of 93.64% and the F1 of
95.06% reported previously for the CyTag, it
represented the state-of-the-art in Welsh POS-
tagging. Also, although the CySemTagger did
not report those specific metrics, it is currently
the only semantic tagger for Welsh language that
we are aware of. Therefore, the evaluation re-
sults from the multi-tagger built in this experi-
ment, which simultaneously performs both POS-
and SEM-tagging, were compared against these
tools.

The effects of dropout regularisation and batch
normalisation were examined with the previously
selected parameters for vector size=100, mini-
batches=8 and dropout rate=30%. As shown in
Table 4, the results indicate that, at the detriment
of accuracy, both dropout and the batch normalisa-
tion achieved significant reductions in evaluation
loss. Without them, the training accuracy and loss
scores for the multi-task tagger are 99.23% and
0.021 respectively while the evaluation scores are
95.24% and 6.161. However, with only dropout,
training accuracy and loss scores are 98.36% and
0.050 while those of evaluation are 94.89% and
4.880.

Batch normalisation without dropout produced
accuracy and loss scores of 95.51% and 0.144
respectively while those of evaluation produced
92.57% and 3.837 respectively. The combination
of them achieved a significant reduction in evalu-
ation loss (2.682), but with relatively poorer accu-
racy scores for training (88.88%) and evaluation
(86.66%).

Figures 4 and 5 show that, as used in this ex-
periment, the batch normalisation had a more reg-
ularising effect than the dropout, thereby slowing
down convergence and avoiding over-fitting.

5 Conclusion

The main motivation for this work is to contribute
a useful tool to the fledgling Welsh NLP research
effort. There are two key objectives of this work:
a) To build a multi-task classifier that can match
the performance of the existing rule-based sys-
tems for Welsh POS and semantic taggers with
as little human input as possible. b) To lever-
age existing language models such as word em-
bedding created using unsupervised methods. Our
work has demonstrated that these objectives can
be achieved, although our results of a small-scale

experiment can not be conclusive. The results
obtained in this work compare favourably with
those obtained from the existing rule-based mod-
els. We have also shown that, in a low resource
setting, multi-task framework can also bring im-
provements to mono-lingual tasks, which is com-
plementary to the previous findings from multi-
lingual multi-task learning scenarios.

In our experiment, the neural network architec-
ture was configured using pre-existing tools and
frameworks, following suggestions from the lit-
erature. In future, we will focus on optimising
the system parameters to improve the training effi-
ciency and performance of the tagging models, as
well as constructing larger training data.
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A Appendices

A.1 The Basic CyTag Tagset
The list of the coarse-grained (basic) CyTag
part-of-speech categories used in this work is as
shown below.

R han Ymadrodd CYTAG(ENG)
Enw (Noun) E (NN)
Y Fannod Benodol (Article) YFB (ART)
Arddodiad (Preposition) Ar PRE
Cysylltair (Conjunction) Cys (CJN)
Rhifeiriau (Numeral) Rhi (NUM)
Ansoddair (Adjective) Ans (ADJ)
Adferf (Adverb) Adf (ADV)
Berf (Verb) B (VRB)
Rhagenw (Pronoun) Rha (PRN)
Unigryw (Unique) U UNI)
Ebychiad (Interjection) Ebych (ITJ)
Gweddilliol (Others) Gw (OTH)
Atalnodiad(Punctuation) Atd (PUN)

A.2 The USAS Semantic Tagset
Below is a list and the descriptions of the USAS
semantic top level categories:

Domain Description
A General and abstract terms
B The body and the individual
C Arts and crafts
E Emotion
F Food and farming
G Government and public
H Architecture, housing and the home
I Money and commerce in industry
K Entertainment, sports and games
L Life and living things
M Movement, location, travel and

transport
N Numbers and measurement
O Substances, materials, objects and

equipment
P Education
Q Language and communication
S Social actions, states and processes
T Time
W World and environment
X Psychological actions, states and

processes
Y Science and technology
Z Names and grammar
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Vulić, Ivan, 72

Wang, Yanjie, 104
Winata, Genta Indra, 181

Yang, Yinfei, 250
Yuan, Steve, 250

Zhang, Sheng, 1
Zobnin, Alexey, 244


	Program
	Deep Generalized Canonical Correlation Analysis
	To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks
	Generative Adversarial Networks for Text Using Word2vec Intermediaries
	An Evaluation of Language-Agnostic Inner-Attention-Based Representations in Machine Translation
	Multilingual NMT with a Language-Independent Attention Bridge
	Efficient Language Modeling with Automatic Relevance Determination in Recurrent Neural Networks
	MoRTy: Unsupervised Learning of Task-specialized Word Embeddings by Autoencoding
	Pitfalls in the Evaluation of Sentence Embeddings
	Learning Bilingual Sentence Embeddings via Autoencoding and Computing Similarities with a Multilayer Perceptron
	Specializing Distributional Vectors of All Words for Lexical Entailment
	Composing Noun Phrase Vector Representations
	Towards Robust Named Entity Recognition for Historic German
	On Evaluating Embedding Models for Knowledge Base Completion
	Constructive Type-Logical Supertagging With Self-Attention Networks
	Auto-Encoding Variational Neural Machine Translation
	Learning Bilingual Word Embeddings Using Lexical Definitions
	An Empirical Study on Pre-trained Embeddings and Language Models for Bot Detection
	Probing Multilingual Sentence Representations With X-Probe
	Fine-Grained Entity Typing in Hyperbolic Space
	Learning Multilingual Meta-Embeddings for Code-Switching Named Entity Recognition
	Investigating Sub-Word Embedding Strategies for the Morphologically Rich and Free Phrase-Order Hungarian
	A Self-Training Approach for Short Text Clustering
	Improving Word Embeddings Using Kernel PCA
	Assessing Incrementality in Sequence-to-Sequence Models
	On Committee Representations of Adversarial Learning Models for Question-Answer Ranking
	Meta-Learning Improves Lifelong Relation Extraction
	Best Practices for Learning Domain-Specific Cross-Lingual Embeddings
	Effective Dimensionality Reduction for Word Embeddings
	Learning Word Embeddings without Context Vectors
	Learning Cross-Lingual Sentence Representations via a Multi-task Dual-Encoder Model
	Modality-based Factorization for Multimodal Fusion
	Leveraging Pre-Trained Embeddings for Welsh Taggers

