
Statistical Knowledge Patterns:
Identifying Synonymous Relations

in Large Linked Datasets

Ziqi Zhang1, Anna Lisa Gentile1, Eva Blomqvist2,
Isabelle Augenstein1, and Fabio Ciravegna1

1 Department of Computer Science, University of Sheffield, UK
2 Department of Computer and Information Science, Linköping University, Sweden
{z.zhang,a.l.gentile,i.augenstein,f.ciravegna}@dcs.shef.ac.uk,

eva.blomqvist@liu.se

Abstract. The Web of Data is a rich common resource with billions of triples
available in thousands of datasets and individual Web documents created by both
expert and non-expert ontologists. A common problem is the imprecision in the use
of vocabularies: annotators can misunderstand the semantics of a class or property
or may not be able to find the right objects to annotate with. This decreases the
quality of data and may eventually hamper its usability over large scale. This paper
describes Statistical Knowledge Patterns (SKP) as a means to address this issue.
SKPs encapsulate key information about ontology classes, including synonymous
properties in (and across) datasets, and are automatically generated based on
statistical data analysis. SKPs can be effectively used to automatically normalise
data, and hence increase recall in querying. Both pattern extraction and pattern
usage are completely automated. The main benefits of SKPs are that: (1) their
structure allows for both accurate query expansion and restriction; (2) they are
context dependent, hence they describe the usage and meaning of properties in
the context of a particular class; and (3) they can be generated offline, hence the
equivalence among relations can be used efficiently at run time.

1 Introduction

The Web of Data is a rich common resource with billions of triples available in thousands
of datasets and Web documents (including RDFa and microdata annotations) created by
a growing number of people, including non expert ontologists (e.g. Web managers gen-
erating schema.org microdata annotations). This, however, brings the risk of imprecision
in the use of vocabularies (schemas and ontologies), including their systematic misuse.
Annotators can misunderstand the semantics of a concept or relation or may not be able
to find the right classes and properties to annotate with3. This decreases the quality of
data and may eventually hamper its usability over large scale. The problem gets even
more complex when using several datasets together, which may refer to the same classes,
e.g. DBpedia types, but use different sets of properties.

3 Throughout this paper we use the terms “concept” and “class” interchangeably, to mean a
concept defined in a vocabulary (i.e., ontology). Similarly, we use the term “relation” as a
synonym for “property”.

In this paper we focus on a problem found in numerous datasets: the use of classes
and properties which are alien to the reference vocabulary provided for the dataset, but
that may be equivalent to existing classes or properties in the reference vocabulary, or
may be used to extend that vocabulary at data creation time. This issue generates low
recall when querying datasets, as the user must guess which properties are actually used
in the dataset as opposed to the ones formally defined in the vocabulary. A similar issue
also arises when attempting to query interlinked datasets, but only being aware of the
vocabulary used in one of them. The linked datasets may use different properties, but
still contain overlapping and complementary data. Without exploring property usage in
all those datasets, queries may miss relevant parts of the data.

We propose the definition and use of Statistical Knowledge Patterns (SKP) as a
mean to address these issues. An SKP is class-specific and encapsulates key information
about an ontology class, including synonymous properties used within (and potentially
between) datasets. SKPs aim at reducing the complexity of understanding and querying
data, by reducing the variety of properties to only include the core properties of the main
SKP class, and their characteristics. We propose an unsupervised approach to generate
SKPs based on statistical data analysis, and introduce a measure of “synonymity” of
two properties of a class, which is used to cluster synonymous properties. Effectively, an
SKP addresses the vocabulary heterogeneity of classes based on their usage data, within
datasets, or between datasets that are linked through that class. One possible usage of an
SKP is query expansion when querying the data underlying the SKP (shown in Sect. 5).

Both pattern extraction and pattern usage are completely automated. The main
benefits of SKPs are: that (1) their structure allows for both accurate query expansion
and restriction; (2) they are context dependent, hence they can describe the usage and
meaning of properties in the context of a particular class and even within a specific
dataset (or group of datasets), hence also accounting for synonymity that hold only in
specific repositories, domains or communities; and (3) they can be generated offline,
hence the synonymity among properties can be used efficiently at run time.

The paper is organised as follows: Sect. 2 describes related work; Sect. 3 introduces
the SKP generation method, and Sect. 4 presents the synonymity measure and property
clustering in detail; Sect. 5 describes our experiments and discusses the evaluation of
our approach; Sect. 6 concludes the paper and discusses future work.

2 Related Work

Knowledge Patterns (KP) have been defined as general templates or structures used to
organise knowledge [8]. In the Semantic Web scenario they are used both for constructing
ontologies [3,7,14] and for using and exploring them [2,10,11,13].

In the area of ontology engineering several kinds of patterns [7] have been used.
On such type is the Content Ontology Design Patterns (CODPs), which are small,
reusable pieces of ontologies that consist of just a few classes. They represent core
concepts in an ontology and are either extracted or re-engineered from ontologies or
other data structures. CODPs are similar to SKPs in the way that they also represent
concepts with their most distinguishing characteristics. Unlike SKPs however, they
have to be created manually or semi-automatically, and since they are abstract patterns

intended for being used as “templates” in ontology engineering they usually lack any
direct connection to data and cannot directly (without manual specialisation) be used
for querying Linked Data. Since CODPs represent an abstract top-down view, they
additionally do not consider aspects such as diversity and synonymy among properties,
which is one of the things we focus on in this paper.

The approach closest to ours is the generation of Encyclopedic Knowledge Patterns
(EKPs) [11], which have been built mainly for usage in exploratory search [10]. The EKP
generation process exploits statistics of links from Wikipedia to select which classes are
the most representative for describing each concept. The assumption is that if entities of
a class A frequently link to entities of class B, then class B is an important descriptor for
class A. This information is formalised as small OWL ontologies (the EKPs), each having
one main class and relations to other (significantly frequent) classes. The main purpose
of EKPs is to filter out irrelevant data when presenting DBpedia entities, while the ability
to query for data is not a primary concern. Hence, EKPs mainly contain abstractions
of properties, such as “linksToClassB”, which expresses the fact that instances of class
A commonly link to instances of class B (links which could in many cases in turn be
represented by DBpedia properties, but not necessarily). This is however not sufficient
for our case, since our main goal is to use SKPs to query actual data. Hence, we propose
an extension of EKPs, which also include a sufficient coverage of actual properties of the
datasets. Basse et al. [2] also exploit statistics from a specific dataset to produce topic
frames of that dataset. In contrast to Nuzzolese et al. [11] they don’t produce a pattern for
each class but rather generate clusters of classes (up to 15 classes each) that reflect main
topics of the dataset, which is again not sufficient for our goal. Presutti et al. [13] explore
the challenges of capturing KPs in a scenario where explicit knowledge of datasets
is neither sufficient nor straight-forward. They propose a dataset analysis approach to
capture KPs and support datasets querying. Our SKPs expand on this work as not only
do we capture direct statistical information from the underlying datasets, but also further
characterise relevant properties with additional features (e.g. synonymous properties
and range axioms), which we show to be beneficial for querying datasets. As well as
exploratory purposes, another common usage of KPs is within Query Expansion (QE),
and Question Answering (QA) in general. Typical approaches [5] use the lexicalizations
of concepts to map natural language to URIs (with NLP techniques) but they may fail to
capture synonymous relations with completely different lexicalizations.

A core component of our method of creating SKPs is measuring synonymity between
ontology properties. This is related to the work on linking ontological resources in general
[6,9,15]. A large amount of work in this area addresses linking ontology classes and data
instances, linking properties, however is insufficiently addressed. Typical approaches
employ similarity metrics such as string edit distance and semantic similarity measures.
However, string similarity fails to identify equivalent relations if their lexicalisations
are wholly distinct, which is very common in Linked Data. Semantic similarity often
depends on taxonomic structures in existing ontologies [4]. Unfortunately, many relations
which are used in Linked datasets are invented arbitrarily or originated from rudimentary
ontologies [12]. Our previous research [1] shows that a bottom-up approach that uses
Linked Data statistics offers effective solution to measuring similarity. Therefore in this

work we introduce a data-driven synonymity measure for properties on Linked Data and
we use it in the construction of SKPs.

3 SKP Construction Overview

A Statistical Knowledge Pattern (SKP) is an ontological view over a class (defined in
a reference ontology), and captures and summarises the usage of that class (hereafter
called the main class of the SKP) in data. An SKP is represented and stored as an
OWL ontology. The term “statistical” refers to that the pattern is constructed based on
statistical measures on data. Each SKP contains: (1) properties and axioms involving the
main class derived from a reference ontology; (2) properties and axioms involving the
main class that are not expressed in the reference ontology, but which can be induced
from statistical measures on statements published as Linked Data.

The generation of SKPs is mainly characterized by the identification (based on data
triples) and selection of (1) synonymous (i.e. interchangeable) properties; (2) ranges
for properties that have no prior range in the reference ontology. Not all properties (or
clusters of synonymous properties) are stored in the final SKP. To decide which ones are
representative of the SKP main class, their relevance is measured based on the frequency
of usage in available data. The information encoded in the SKP is specific to the main
class, i.e., it does not show a general interpretation of the involved properties but rather
the specific way they are used with the main class. For example, the same property
may be present in several SKPs, but with distinct range axioms and as part of separate
property clusters, depending on how it is used with the respective main class of each SKP.
A concrete example is the property dbp:lakeName4 which is synonymous to foaf:name,
but only for the class dbo:Lake.

At the moment we only consider the properties that are used with instances of the
main class in the subject position, as part of the characterization of that class, which in
our experience is usually the case for Linked Data, e.g., the way the DBpedia Ontology is
structured. One may also consider properties with the opposite “direction”, i.e., instances
of the main class as objects (for example, isLocationOf instead of hasLocation), however,
we do not include this at the moment (acknowledging the risk of loosing some fraction
of the data) since we have no method to determine what the main focus of a triple is, we
therefore make the simple assumption that being a subject of a triple means that this is
the entity the triple is describing. The SKP generation is fully automated, whereby SKPs
can be re-generated as soon as data change, without manual effort. At the same time
SKPs are used as stored resources hence increasing usage efficiency.

Relation to EKP extraction Since SKPs are an extension of EKPs [11], if an EKP already
exists it can be used as an abstract frame for the concrete properties and axioms that
are added through our SKP generation method. In particular, the abstract properties

4 Prefixes used are dbo :< http : //dbpedia.org/ontology/ >,
dbp :< http : //dbpedia.org/property/ >,
skos :< http : //www.w3.org/2004/02/skos/core# >,
f oa f :< http : //xmlns.com/ f oa f /0.1/ >,
rd f s :< http : //www.w3.org/2000/01/rd f − schema# >

introduced by EKPs (i.e., “links to class X”) can be used to group properties with
overlapping range axioms, to give the SKP a more intuitive structure and improve human
understandability of the pattern. However, we do not restrict an SKP to being an EKP,
i.e., a set of “paths” in DBpedia (c.f. Def. 2 in [11]), but rather the SKP notion is both
independent of what reference ontology and datasets are used, and the resulting SKPs
may include any OWL axioms that can be statistically induced from data. Our method
for extracting the patterns also differs significantly from the EKP extraction method in
[11], i.e., we use triple data from the dataset in focus (DBpedia is used as an example
for the experiments) while the EKPs are extracted from a wikilink dataset, which means
that we operate on triples using distinct named properties rather than just “links”. With
respect to comparing the methods, we are not using the EKP notion of “path”, c.f. [11]
where a path is defined as a triple with the first element being the subject type, the second
being the property dbo:wikiPageWikiLink and the third being the object type, i.e., the
first and last element of a path being classes. In our case we are not initially interested
in the object types, but rather the object instances (resources) themselves, hence, the
path abstraction is replaced by actual RDF triples, with concrete instances (resources) as
subjects and objects, but selected based on the fact that the subject type is the main class
of the SKP. This means that, for instance, we also include datatype properties, and triples
where the object type is missing, as opposed to the EKP extraction method. Similarly to
[11], however, we only use single triples, not chains of triples. Paths are selected for EKP
inclusion based on their so called “path popularity”, i.e., a measure on how large fraction
of the individuals of the main class have links to an individual of a certain type (c.f.
indicators in [11]), putting the focus on the object types (classes). SKPs, on the contrary,
put the main focus on the properties, and apply a frequency measure on property usage,
i.e. subject-object pairs of RDF triples using that property (c.f. experiments on different
such measures and thresholds in Sect. 5.1), where subjects are all instances of the SKP
main class, for setting an inclusion threshold.

Fig. 1. Extract from the SKP for the DBpedia Ontology class Lake (in TopBraid Composer’s RDF
graph notation).

SKP example As an example, we take the SKP generated for the DBpedia Ontology
class dbo:Lake5. A property from the reference ontology, which is sufficiently frequent
in actual data to be included in the SKP, is dbo:shoreLength, hence, it is included in
the SKP. Additionally, it has been found to be synonymous to the property dbp:shore,
hence a skos:closeMatch assertion is added for the two properties. In this case ri =

dbo:shoreLength is a reference property having a set of “synonymous properties” SRi

induced from data (in this case consisting of only one member). Figure 1 illustrates
an extract from the same SKP showing another example; the property dbp:lakeName
has been clustered with the properties dbp:name, dbp:label, foaf:name, and dbp:centre,
which is expressed via the skos:closeMatch assertion. The selection of synonymous
properties is obtained via a synonymity measure, described in Section 4, but before taking
a deeper look at the measure we provide an overview of the steps of the two main phases
of the overall method; detecting synonymity, and selecting properties.

Synonymity of Properties To create an SKP we identify the properties used for the SKP
main class based on data and measure their synonymity. We propose a novel synonymity
measure of properties or relations to be detailed in Section 4. The overall process is:

1. Query the dataset for all the instances (IND) of the main class; query the dataset
for all triples having any i ∈ IND in subject position (INDsub j) and collect the types
(through rdf:type or a datatype) of the objects of all those triples.

2. For each property used in INDsub j, collect the subset of IND having the property as
predicate, INDprop - the subject-object pairs of this set represents the characteristics
of that property, given the main class at hand.

3. Do a pairwise comparison of all subject-object pairs in INDprop for all the properties
and calculate a synonymity score for each pair.

4. Use the synonymity scores (representing evidence of properties being interchange-
able) to cluster properties representing the same semantic relation.

Selection of properties The aim of the above process is to discover for each specific
main class clusters of properties with the same meaning. In practice, certain number of
properties are found to be noise or non-representative. Thus we further refine the set of
selected properties for each SKP as follows:

1. Calculate the frequencies of properties used in data, i.e. counting distinct objects in
INDprop. For clusters, treat the cluster as if it was a single property hence add the
frequency counts of the constituent properties.

2. Use a cutoff threshold T to filter out unfrequent properties (or clusters). Add those
above the threshold to the SKP, including information about their appropriate prop-
erty type (e.g. owl:DatatypeProperty or owl:ObjectProperty), with their original
namespace intact. We experiment with several approaches for setting the threshold
T, and report on this in Section 5.

3. For each member of a property cluster that is added to the SKP, add a skos:closeMatch
relation between the cluster members.

5 http://ontologydesignpatterns.org/skp/Lake.owl

4. For each property, create the set of possible ranges. Construct a range axiom in-
cluding each range class that is given to the property in the reference ontology (if
present), and if no range axiom is present, construct a range axiom as the union of
each range class that can be identified in data (frequent object types of the triples).

5. Add rdfs:subPropertyOf axioms for those properties where the ranges match some
abstract EKP property (i.e., the “links to class X” abstract properties).

6. Store the SKP as an OWL2 file.

4 Synonymity Measure and Property Clustering

We consider synonymity to be symmetric and argue that the synonymity for each distinct
pair of properties or relations depends on three components: triple overlap, cardinality
ratio and clustering.

Triple overlap evaluates the degree of overlap in terms of the usage of properties in
triples. Let p be a property and rp be the set of triples containing p as predicate, and let
S O(p) be the collection of subject-object pairs from rp and S Oint the intersection

S Oint(p, p′) = S O(rp) ∩ S O(rp′) (1)

then the triple overlap TO(p, p′) is calculated as

MAX{
|S Oint(rp, rp′)|

|rp|
,
|S Oint(rp, rp′)|

|rp′ |
} (2)

Intuitively, if two properties p and p′ have a large overlap of subject-object pairs in their
data instances, they are likely to have identical meaning. The MAX function minimises
the impact of infrequently used, but still synonymous relations (i.e., where the overlap
covers most triples of an infrequently used relation but only a very small proportion of a
much more frequently used).

Subject agreement While triple overlap looks at the data in general, subject agreement
looks at the overlap of subjects of two relations, and the degree to which these subjects
have overlapping objects. Let S (p) return the set of subjects of relation p, and O(p|s)
returns the set of objects of relation p whose subjects are s, i.e.: .

O(p|s) = O(rp|s) = {to|tp = p, ts = s} (3)

we define:
S int(p, p′) = S (rp) ∩ S (rp′) (4)

α =

∑
S∈S int(p,p′)

{
1 if |O(p|s) ∩ O(p′|s)| > 0
0 otherwise

|S int(p,p′)|
(5)

β =
√
|S int(p, p′)|/|S (p) ∪ S (p′)| (6)

then the agreement AG(p, p′) is

AG(p, p′) = α · β (7)

In Equation 7, α counts the number of overlapping subjects whose objects have at
least one overlap. The higher the value of α, the more the two relations agree in terms of
their shared subjects. We do not consider the absolute value of overlap because both p
and p′ can be 1:many relations and a low overlap value could mean that one is densely
populated while the other is not, which does not necessarily mean they do not agree. β
evaluates the degree to which two relations share the same set of subjects. The agreement
AG(p, p′) balances the two factors by taking their product. As a result, relations that have
high level of agreement will have more subjects in common (β), and a large proportion
of shared subjects who also have shared objects (α).

Cardinality ratio is a ratio between cardinality of the two relations. Cardinality of a
relation CD(p) is calculated based on data:

CD(p) =
|rp|

|S (rp)|
(8)

and the cardinality ratio is calculated as

CDR(p, p′) =
MIN{CD(p),CD(p′)}
MAX{CD(p),CD(p′)}

(9)

On a sufficiently large sample, the derived cardinality value should be close to
the conceptually true value and two equivalent relations should also have the same
cardinality. The final synonymity measure integrates all the three components to return a
value in [0, 2]:

E(p, p′) =
TO(p, p′) + AG(p, p′)

CDR(p, p′)
(10)

Clustering We apply the measure to every pair of relations of a concept of interest, and
keep those with a non-zero synonymity score. The goal of clustering is to create groups
of synonymous relations based on the pair-wise synonymity scores. We use a simple
rule-based agglomerative clustering algorithm that uses a number of thresholds. First,
we build initial clusters based on all property pairs. We rank all property pairs by their
synonymity score, then we keep a pair as an initial cluster if (i) its score and (ii) the
number of triples covered by each property are above a certain threshold, TminS yn and
TminT P respectively (i.e., we create a cluster containing p and p′ if E(p, p′) > TminS yn

and |rp| > TminT P and |rp′ | > TminT P). Next, to merge clusters, given an existing cluster C
and a new pair (p, p′) where either p ∈ C or p′ ∈ C, the other property is added to C if
E(p, p′) is close to the average of all equivalence scores of connected pairs in C. The
closeness is determined by another threshold TminS ynRel, which is a fractional number.
Thus if the average of the equivalence scores of all connected pairs in C is 0.7, the new
pair (p, p′) is merged with C if E(p, p′) > 0.7 ∗ TminS ynRel. This preserves the strong
connectivity in a cluster. This is repeated until no further merge action is taken.

5 Evaluation

To evaluate the use of SKPs we have chosen to focus on two main aspects: (1) the extent
to which the SKPs describe and characterise the underlying data, and give access to that

data; (2) the extent to which the identification of “synonymous” properties improve on
retrieval coverage, without introducing erroneous data in the result. Thus we perform
two sets of experiments for different purposes.

We used DBpedia as the underlying semantic data repository in this experiment and
we query the live DBpedia SPARQL endpoint to retrieve data, and use the DBpedia
Ontology as reference ontology6. In this evaluation, we created SKPs for 34 DBpedia
classes7, which are exactly the classes that can be extracted from the queries of the
QALD1 question answering dataset8. These classes were selected for the experiments
since we intend to in the future apply the SKPs to query expansion and make use of the
QALD1 dataset as a benchmark. The SKP construction method is not restricted to any
particular ontology or datasets, but can be applied to any reference ontology-dataset pair
for which they are needed. In the experiments we use TminS yn = 0.1, TminT P = 0.01% and
TminS ynRel = 0.6 as thresholds.

5.1 SKP Observation

SKPs aim at reducing the variety of properties to only include the core properties of
the main SKP class, however, to be useful in practice, such a reduced representation
should still allow for accessing as large part of the underlying data as possible. We have
measured two aspects of each SKP, (1) the absolute number of properties included in the
SKP and the fraction of the total number of distinct properties of the main class that this
set represents, and (2) the fraction of the total number of triples (where the subject is an
instance of the main class) that the properties included in the SKP allows to cover. The
ideal situation would be that a low absolute number (1) of properties would still render
an almost perfect coverage of triples (2).

However, first we need to generate a set of SKPs to assess, and for this we need to
set an appropriate property selection threshold. Three sets of experiments have therefore
been performed, each applying a different method for setting the threshold on what
properties to include in the SKP. For each such threshold, the parameters of the threshold
have been varied, so as to evaluate (a) the amount of properties included, and (b) the
amount of triples covered, in each case. This leads us to conclude both which method for
setting the threshold that seems to perform best over the SKP test set, and also gives us
an evaluation of how well the SKPs using that threshold perform on criteria (1) and (2).

A naive approach would be to set an absolute threshold on the count of triples
using a certain property, i.e. including all properties with more than a certain number of
triples (subject type being the SKP main class). Figure 2 shows the performance of this
approach, illustrating both the best (maximum triple coverage and minimum fraction of
included properties), worst (minimum triple coverage and maximum fraction of included
properties) and the average performance of each criteria (average triple coverage and
average fraction of included properties), over the SKP set. At an absolute threshold of 20

6 http://dbpedia.org/sparql, ontology: http://dbpedia.org/ontology
7 The preliminary SKPs used in the evaluation, including skos:closeMatch statements, can be

found at http://ontologydesignpatterns.org/skp/SKPs130510.zip
8 http://greententacle.techfak.uni-bielefeld.de/˜cunger/qald1/evaluation/

dbpedia-test.xml

triples we have a triple coverage between 79 and 98%, at an included property fraction
of between 14 and 45%.

Fig. 2. Performance of the absolute thresholds (when set to 5, 10, 20 and 50 triples).

A more elaborate threshold would consider the properties that represent at least a
certain fraction of the total number of triples (subject type being the SKP main class).
Although this may sound reasonable at first glance, Figure 3 shows that this threshold
actually performs worse than the absolute threshold. There is actually no value of the
fraction that we could find which both guarantees us to get any properties at all, for all
the SKPs in our set, but with no SKP on the other hand including the complete set of
properties (even those with very low frequency). As in the previous figure, Figure 3
shows the best, worst, and average performance over the SKP set. While we can get the
worst case property fraction included to drop to about 75% (at the 1% threshold) then
the coverage of triples has already dropped to below 70%.

Fig. 3. Performance of the triple fraction threshold (when set to between 0.05% and 1% of triples).

Finally, we explore a normalised threshold that turns out to perform best. We first
calculate the average number of triples per property (where the property set still constitute
all triples where the subject type is the main class), and then set a threshold as a fraction
of that average. With this threshold we, hence, both take into account the size of the triple
set (as in the previous method), but also the number of properties used for instances of
the main class. In Figure 4 the performance of this threshold is shown. Note that up until
around 0.6 (meaning that properties are included if the size of their triple set constitute at
least 60% of the average size of a triple set for any property used for the main class) the
triple coverage stays really high, i.e. in the worst case still above 88%, with a worst case
fraction of included triples of 38%. Hence, this indicates that using this threshold, we
can probably discard at least 62% of all properties (usually more), for any class in the

DBpedia ontology, without reducing the amount of triples we can still access to below
88% (on average we can even access 94% of the triples, or in the best case 97%).

Fig. 4. Performance of the final threshold (when set to between 0.3% and 1.2% of the average
number of triples per property).

Although we expect this to be true also for other datasets, and for generating SKPs
over several interlinked datasets, we can of course not guarantee that this is the best
threshold in all cases. However, this experiment also shows how one can (completely
automatically) test a threshold calculation method, to select the best one. Hence, when
generating SKPs for other datasets, it is recommended to rerun these experiments, to
find the “optimal” threshold for those datasets.

Nevertheless, the 0.6 threshold has been used for the SKPs generated for the rest of
our experiments, and Table 1 shows the characteristics of the SKPs generated using this
threshold. The name of the SKP is equal to the name of the main class, as defined in
the DBpedia Ontology (our reference ontology). First we present some statistics on the
main class itself, i.e. the number of instances in DBpedia version 3.8, the total number
of triples with those instances in the subject position, and the total number of distinct
properties that can be found in that set of triples. Next, we present some statistics on the
SKP generated for that main class, i.e. the total number of properties included in the
SKP, the fraction of the total number of properties the select ones represent (criteria (1)
mentioned previously), and the fraction of the included properties that are not defined
in the reference ontology. The latter aspect gives a first indication of how much added
information about the main class our SKPs contain, compared to the DBpedia Ontology
itself. On average, 78% of the properties in our SKPs are not defined in the DBpedia
ontology. Finally, we present the ability of the SKP to cover the actual triples in the
DBpedia dataset, for the main class, through the number of triples covered and the
fraction of the total number of triples that the selected ones represent (criteria (2)).

5.2 Using SKPs for Query Expansion

To evaluate the benefit of synonymous properties provided by the SKP we create a
query expansion experiment to study (i) the increase in recall (added data) with (ii) the
decrease in precision (introduced errors) by using the added properties. For each SKP
we consider the set Ront of all properties defined by a reference ontology - DBPedia in
this case, and we generate a query for each ri ∈ Ront such as “SELECT DISTINCT ?s
?o WHERE {?s a Main Concept of SKP . ?s ri ?o .}”. The set of values of ?o returned

SKP name no. of no. of no. of no. of fract. of fract. of non- no. of fract. of
(main class) instances triples properties properties properties ontology triples triples

in SKP included properties covered covered
Actor 2912 19833 246 88 0.36 0.77 18847 0.95
AdministrativeRegion 28229 20721 1235 436 0.35 0.90 18432 0.89
Agent 956476 18395 877 232 0.26 0.69 16197 0.88
Architect 1348 19540 169 38 0.22 0.74 18786 0.96
Bridge 2775 23446 351 94 0.27 0.68 21711 0.93
BritishRoyalty 6563 17918 250 66 0.26 0.79 17037 0.95
Cave 238 6100 105 31 0.30 0.87 5677 0.93
City 24423 27064 876 238 0.32 0.89 24210 0.89
Company 44516 17010 352 102 0.29 0.63 16037 0.94
Country 2710 22530 666 194 0.29 0.87 21286 0.94
Currency 333 6807 173 64 0.37 0.97 6072 0.89
Eukaryote 199085 15983 255 78 0.31 0.85 14853 0.93
FictionalCharacter 9878 19441 377 120 0.32 0.85 18352 0.94
Film 88503 17674 153 48 0.32 0.65 16847 0.95
Lake 10294 19915 412 51 0.12 0.63 19140 0.96
Language 6860 19357 149 35 0.23 0.89 17942 0.93
Magazine 3388 18986 252 41 0.16 0.78 18427 0.97
MilitaryConflict 10691 20904 187 32 0.17 0.66 20209 0.97
Model 1416 18576 257 63 0.25 0.84 17770 0.96
Mountain 13259 19895 359 65 0.18 0.82 18799 0.94
MountainRange 1691 26717 322 106 0.33 0.79 25089 0.94
Museum 3148 17631 290 44 0.15 0.80 16831 0.95
OfficeHolder 32373 21706 476 103 0.22 0.65 20039 0.92
Organisation 200789 23777 840 194 0.23 0.69 21434 0.90
Person 763644 17479 580 168 0.29 0.67 15649 0.90
Place 638879 25527 1126 280 0.25 0.86 22751 0.89
PoliticalParty 3311 20822 267 84 0.31 0.75 19903 0.96
Protein 12042 16513 178 48 0.27 0.75 16037 0.97
River 24267 18759 333 128 0.38 0.74 17382 0.93
Royalty 6563 17283 237 63 0.27 0.78 16315 0.94
SoccerClub 15727 30454 192 47 0.24 0.81 29485 0.97
Species 202339 16097 265 75 0.28 0.84 14933 0.93
TelevisionShow 23480 24595 292 95 0.33 0.65 23681 0.96
Website 2388 15555 295 48 0.16 0.85 14773 0.95

Table 1. Characteristics of the generated SKPs

from each query is considered the baseline value set for the property ri, denoted by Vri .
Then let S Ri be the set of synonymous properties to ri. For each ri ∈ Ront we generate
a query for each sr j

i ∈ S Ri in the same form as before to retrieve the set of values Vsr j
i
.

Then the total expanded value set (denoted by EVri) is the union of all Vsr j
i

for each

sr j
i . To determine the accuracy of values in EVri , we manually analyse each property

in each S Ri and annotate the property as either a correct synonymous property for ri or
not. Annotating property synonymity involved four computer scientists, and the Inter-
Annotator-Agreement (IAA) based on a sample is 0.72. Then, all the corresponding
values returned by the respective query that uses this property are marked either correct
or wrong. The rationale is that we assume each individual triple on the Linked Data to be
semantically correct, or in other words, that data publishers have respected the semantic
meanings of predicates when releasing triple datasets. Although this is not always true
on the Linked Data, we believe this gives a reasonable approximation of accuracy.

Using these annotations, we study the accuracy of the synonymity measure and also
the increase ratio in the retrievable data due to the inclusion of each synonymous property.
We create two sets of statistics for this purpose. First, given a reference property ri and

each of its synonymous property sr j
i , we compute an increase ratio as IR =

√
|V

sr j
i
|

|Vri |
. We

rank all pairs of 〈ri, sr j
i 〉 by descending order of their synonymity scores, and plot IR for

each pair (Figure 5). In total there are 561 pairs of relations for all SKPs.

Fig. 5. Increase Ratio (IR) for each 〈ri, sr j
i 〉 (marked as green ^ where the synonymous property is

correct and red × where it is wrong), ranked by synonymity scores (�) in descending order. IR is
aligned to the left y-axis and synonymity scores are aligned to the right.

As shown in Figure 5, the synonymity measure correctly predicts synonymous
properties in most cases. In many cases, the increase ratio is significant, suggesting that
data retrieval can considerably boost recall by including SKP synonymous properties in
the query process. There appears to be an inverse correlation between the synonymity
score and the correctness of prediction. With high synonymity scores (e.g., > 1.4) the
vast majority of synonymous properties discovered for the reference properties are
found correct; however, when errors are made, the increase ratio is very low, meaning
little noise is added. This is a useful feature as, when necessary, we can apply higher
threshold in order to ensure high precision in retrieval. There is no correlation between the
increase ratio and the synonymity score. This is expected as on the one hand, synonymity
describes the extent to which two properties are “interchangeable” while the increase
ratio addresses what they have “in difference”. Ideally, for the purpose of data retrieval,
we would like to have a re-ranking process to combine both synonymity and increase
ratio in order to promote properties that are highly synonymous, and can also potentially
add a lot information to each other. We will explore this in future.

While Figure 5 looks at individual pairs of properties independently, from the SKP
construction point of view we are more interested in the incremental performance as the
SKP is expanded by progressively adding synonymous properties and data instances. For
this purpose, we simulate an ontology engineering process, where an engineer expands
the reference ontology by adding synonymous properties and also new data instances
retrieved by such properties. The engineer may rank each pair of reference property with
a synonymous property by their score, and progress by incrementally add one property
at a time. At each iteration itk, we study (i) the incremental increase ratio (IIR) due to
new data instances retrievable by correct synonymous properties added up at itk and
(ii) the incremental noise ratio (INR) due to new data instances retrievable by incorrect
synonymous properties added up at itk. Let V+

sr j
i

⊂ Vsr j
i

be the values added by correct

synonymous properties and V−
sr j

i

⊂ Vsr j
i

be the values added by incorrect synonymous

properties, the calculation of IIR and INR at each iteration k are calculated as

IIRk =
|

k⋃
i=1

V+

sr j
i

|

|
k⋃

i=1
(V

sr j
i
∪V

r j
i
)|

INRk =
|

k⋃
i=1

V−
sr j

i

|

|
k⋃

i=1
(V

sr j
i
∪V

r j
i
|

Fig. 6. Incremental Increase Ratio (IIR) and Incremental Noise Ratio (INR) at decreasing syn-
onymity score.

Figure 6 shows generally consistent patterns with Figure 5. A high synonymity score
rarely introduces errors and when it does, the noise added to the ontology is trivial. As
the score drops, noise becomes notable and possibly harms ontology construction.

Error analysis To understand the limitations of our method we manually analysed
incorrect predictions given by the synonymity measure. We categorise three main sources
of errors: (1) highly semantically related properties; (2) property range ambiguity and
(3) arguable human annotations.

For many highly semantically related properties, we found that often there is a high
degree of overlap in their object values. As a result, the synonymity measure makes
incorrect predictions based on the data. For example, cities may have the same average
temperatures across several months. As a result, our method may predict properties such
as “averageTemperatureJune” and “averageTemperatureJuly” to be synonymous. For
countries, the property that describes the largest city is considered synonymous with
property that describes the capital of the country.

Another source of errors is property range ambiguity. We noticed that for some
incorrect synonymous property pairs, a common characteristic is that the ranges of
the properties derived from data (i.e., the types of the objects of the properties) are
ambiguous. Using the synonymous pair dbo:country and dbo:location for the concept
dbo:MountainRange as an example, we retrieve the most specific type (ignoring data
types) of the objects for each property respectively. We noticed that, dbo:country have
two distinct ranges in data and the most frequently used is dbo:Country, covering
96% of data; while dbo:location has 5 distinct ranges and the most frequently used is
dbo:Place, covering 46% of data, which suggests that the objects of this property is
highly inconsistent in terms of their types. Intuitively, if a property’s range is ambiguous
it would be difficult to assess its synonymity with other properties. We will incorporate
this information in our measure in future work.

We also noticed some examples of highly arguable human annotations. As an exam-
ple, dbo:successor and dbpp:after is predicted synonymous for the class dbo:Royalty.

However, our annotators considered this example to be incorrect. We manually checked
the data and discovered that among all object values (only those that have object types)
of dbpp:after, 92% belong to the type dbo:Royalty and describes a successor of a royalty;
and 98% (including dbo:Royalty) belong to a class representing a position or person,
in which case it describes a successor of certain kind. Thus arguably, although the two
properties appear insufficiently synonymous, the data provides additional strong evidence
for us to consider them as synonymous for the specific class dbo:Royalty.

6 Conclusion and Outlook

In this paper we have introduced the notion of Statistical Knowledge Patterns (SKPs),
for capturing the properties used with a certain concept in a bottom-up data-oriented
way. We have presented an unsupervised method for generating SKPs, and evaluated
it on the DBpedia dataset using the DBpedia ontology as a reference vocabulary. Our
evaluation shows that SKPs are able to significantly reduce the number of properties
we need to consider, while still maintaining a high coverage of the dataset, compared to
considering the complete set of properties present in data. We believe that SKPs are an
efficient way to avoid noise in the data, since this is most often present in the “long tail”
of property usage. Additionally, the evaluation shows that the clustering of properties,
into sets of synonymous properties, allows us to perform query expansion, using the SKP,
with high accuracy. Since the methods are completely automated, it is easy to maintain
an up-to-date set of SKPs for your dataset, or even across datasets, in order to be able to
efficiently query data with sufficiently high recall at any point in time. The main benefits
of SKPs include: (1) allowing for both accurate query expansion (through the synonymy
of properties) and restriction (through the range axioms); (2) their context dependent
nature, describing the usage and meaning of properties in the context of a particular
concept and even within a specific dataset; and (3) allowing SKPs to be generated offline
(but continuously updated), so that they can be used efficiently at run time.

On an abstract level SKPs can be compared to context-sensitive linguistic resources,
such as linguistic frames. Previously, top-down approaches have been used to reengineer
linguistic frames, e.g. FrameNet, to KPs. An interesting line of future research is to
integrate them with bottom-up approaches such as EKP and SKP generation. As future
work we also plan to focus on the second major feature of the SKPs, namely the
new range axioms that were introduced based on observations of data. Just as for the
properties themselves, the ranges are also concept-specific. We intend to experimentally
validate the range extraction method, and to evaluate the potential of using the range
axioms for restricting property selection in query formulation. Other improvements of
the method could include taking into account more features of the reference ontology
when performing the SKP extraction, e.g. the class hierarchy and additional axioms. We
will also generate SKPs for the complete DBpedia ontology9, and other major sources of
Linked Data. In particular, we intend to explore the construction of “cross-dataset” SKPs
that include synonymous properties from multiple linked datasets. We then intend to
use them in an Information Extraction scenario, for extracting seed data corresponding
to the natural language questions of a human user. In such a scenario, SKPs will be an

9 The catalogue will be published at http://ontologydesignpatterns.org/skp/

essential component, since they represent the actual properties that are used in data, and
since they help to break down the query formulation problem into manageable pieces.

Acknowledgements Part of this research has been sponsored by the EPSRC funded
project LODIE: Linked Open Data for Information Extraction, EP/J019488/1.

References

1. Augenstein, I., Gentile, A.L., Norton, B., Zhang, Z., Ciravegna, F.: Mapping Keywords to
Linked Data Resources for Automatic Query Expansion. In: Proc. of the 2nd International
Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (2013)

2. Basse, A., Gandon, F., Mirbel, I., Lo, M.: DFS-based frequent graph pattern extraction to
characterize the content of RDF Triple Stores. In: Proceedings of the WebSci10: Extending
the Frontiers of Society On-Line, April 26-27th, 2010, Raleigh, NC: US (2010)

3. Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design patterns.
In: Proc. of the 8th International Semantic Web Conference, ISWC 2009, Chantilly, VA, USA,
October 25-29. Lecture Notes in Computer Science, vol. 5823, pp. 65–80. Springer (2009)

4. Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Related-
ness. Comput. Linguist. 32(1), 13–47 (Mar 2006)

5. Cabrio, E., Aprosio, A.P., Cojan, J., Magnini, B., Gandon, F., Lavelli, A.: QAKiS @ QALD-2.
Proceedings of the ESWC 2012 workshop Interacting with Linked Data. Heraklion, Greece.
(2012)

6. Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward, M.J.: Instance-
Based Matching of Large Ontologies Using Locality-Sensitive Hashing. In: Proceedings of
the 11th International Semantic Web Conference, ISWC 2012. (2012)

7. Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook
of Ontologies. International Handbooks on Information Systems, Springer, 2nd edn. (2009)

8. Gangemi, A., Presutti, V.: Towards a pattern science for the Semantic Web. Semantic Web
1(1-2), 61–68 (2010)

9. Le, N.T., Ichise, R., Le, H.B.: Detecting hidden relations in geographic data. In: Proceedings
of the 4th International Conference on Advances in Semantic Processing. pp. 61– 68 (2010)

10. Musetti, A., Nuzzolese, A., Draicchio, F., Presutti, V., Blomqvist, E., Gangemi, A., Ciancarini,
P.: Aemoo: Exploratory Search based on Knowledge Patterns over the Semantic Web (2011),
finalist of the Semantic Web Challenge 2011

11. Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic knowledge patterns
from wikipedia links. In: Proceedings of the 10th international conference on The semantic
web - Volume Part I. pp. 520–536. ISWC’11, Springer-Verlag, Berlin, Heidelberg (2011)

12. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Discovering concept coverings in ontologies
of linked data sources. In: Proceedings of the 11th international conference on The Semantic
Web - Volume Part I. pp. 427–443. ISWC’12, Springer-Verlag, Berlin, Heidelberg (2012)

13. Presutti, V., Aroyo, L., Adamou, A., Schopman, B.A.C., Gangemi, A., Schreiber, G.: Extract-
ing Core Knowledge from Linked Data. In: Proc. of the 2nd Intl. Workshop on Consuming
Linked Data (COLD2011), Bonn, Germany. vol. 782. CEUR-WS.org (2011)

14. Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-based ontology design. In: Suárez-
Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a
Networked World, pp. 35–64. Springer Berlin Heidelberg (2012)

15. Schopman, B., Wang, S., Isaac, A., Schlobach, S.: Instance-Based Ontology Matching by
Instance Enrichment. Journal on Data Semantics, 1(4) 1(4), 219 – 236 (2012)

